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Organization of the Course

Statistics for Data Analytics is a graduate-level introductory course in econometrics, focusing
on estimation and inference in linear models, with practical illustrations in R.

Timetable

See KLIPS for a detailed schedule.

Note: In the first session on 16 October 2025, there will be a lecture instead of exercises. The
final lecture will take place on 21 November 2025.

Lecture Material

• This online script and its pdf version

• eWhiteboard lecture and eWhiteboard exercises

• Problemsets and Rscripts

• ILIAS course

Literature

The script is self-contained. To prepare well for the exam, it’s a good idea to study this
script.

The course is based on James H. Stock and Mark W. Watson’s Introduction to Economet-
rics (Fourth Edition). The Stock and Watson textbook is available for download: PDF by
chapter (Uni Köln VPN connection required).

Further recommended textbooks are:

Day Time Lecture Hall Session Type
Thursday 10:00-11:30 XII (Main Building) Exercises
Thursday 12:00-13:30 XII (Main Building) Lecture
Friday 10:00-11:30 XII (Main Building) Lecture

7

https://klips2.uni-koeln.de/co/pl/ui/$ctx;lang=DE/wbTermin_list.wbLehrveranstaltung?pStpSpNr=510199
https://statistics.svenotto.com
https://statistics.svenotto.com/Statistics-for-Data-Analytics.pdf
https://uni-koeln.sciebo.de/s/cqRXMJpTXc6Ec7T
https://uni-koeln.sciebo.de/s/pwRHBCmB73DaBxJ
https://uni-koeln.sciebo.de/s/GokFFirXKDppE8B
https://www.ilias.uni-koeln.de/ilias/goto_uk_crs_6460145.html
https://elibrary.pearson.de/book/99.150005/9781292264523
https://elibrary.pearson.de/book/99.150005/9781292264523


• Econometric Theory and Methods, by Russell Davidson and James G. MacKinnon. PDF.
• Probability and Statistics for Economists, by Bruce E. Hansen
• Econometrics, by Bruce E. Hansen

Printed versions of the books are available from the university library.

Assessment

The course will be graded by a 90-minute exam. For detailed information please visit the
ILIAS course.

Communication

Feel free to use the ILIAS Statistics Forum to discuss lecture topics and ask questions. Please
let me know if you find any typos in the lecture material. Of course, you can reach me via
e-mail: sven.otto@uni-koeln.de

Important Dates

Registration deadline exam 1 November 13, 2025
Exam 1 November 27, 2025
Registration deadline exam 2 January 27, 2026
Exam 2 (alternate date) February 10, 2026

Please register for the exam on time. If you miss the registration deadline, you will not be
able to take the exam.

R-Packages

The best way to learn statistical methods is to program and apply them yourself. Throughout
this lecture script, we will use the R programming language to illustrate how econometric
methods are applied in practice.

For those of you who are new to R and want to learn more about it, here’s an introductory
tutorial that contains many valuable resources: rintro.svenotto.com. I also recommend the
interactive R package SWIRL, which offers an excellent way to learn directly within the R
environment.

To run the R code of the lecture script, you will need to install some additional packages via
the command install.packages():
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install.packages(c("AER", "fixest", "moments", "dynlm", "modelsummary", "scatterplot3d", "remotes"))

Some further datasets are contained in my package TeachData, which is available in a GitHub
repository. It can be installed using the following command:

remotes::install_github("ottosven/TeachData")
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1 Data

1.1 Data Structures

Univariate Datasets

A univariate dataset consists of a sequence of observations:

𝑌1, … , 𝑌𝑛.

These 𝑛 observations form a data vector:

𝑌𝑌𝑌 = (𝑌1, … , 𝑌𝑛)′.

Example: Survey of six individuals on their hourly earnings. Data vector:

𝑌𝑌𝑌 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

10.40
18.68
12.44
54.73
24.27
24.41

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Multivariate Datasets

Typically, we have data on more than one variable, such as years of education and gender.
Categorical variables are often encoded as dummy variables (also called indicator variables),
which are binary variables. The female dummy variable is defined as:

𝐷𝑖 = {1 if person 𝑖 is female,
0 otherwise.

person wage education female
1 10.40 12 0
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person wage education female
2 18.68 16 0
3 12.44 14 1
4 54.73 18 0
5 24.27 14 0
6 24.41 12 1

A 𝑘-variate dataset (or multivariate dataset) is a collection of 𝑛 observations on 𝑘 variables
(i.e., 𝑛 observation vectors of length 𝑘):

𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛.

The 𝑖-th vector contains the data on all 𝑘 variables for individual 𝑖:

𝑋𝑋𝑋𝑖 = (𝑋𝑖1, … , 𝑋𝑖𝑘)′.

Thus, 𝑋𝑖𝑗 represents the value for the 𝑗-th variable of individual 𝑖. The full 𝑘-variate dataset
is structured in the 𝑛 × 𝑘 data matrix 𝑋𝑋𝑋:

𝑋𝑋𝑋 = ⎛⎜
⎝

𝑋𝑋𝑋′
1

⋮
𝑋𝑋𝑋′

𝑛

⎞⎟
⎠

= ⎛⎜
⎝

𝑋11 … 𝑋1𝑘
⋮ ⋱ ⋮

𝑋𝑛1 … 𝑋𝑛𝑘

⎞⎟
⎠

The 𝑖-th row in 𝑋𝑋𝑋 corresponds to the values from 𝑋𝑋𝑋𝑖. Since 𝑋𝑋𝑋𝑖 is a column vector, we write
rows of the data matrix as 𝑋𝑋𝑋′

𝑖 (its transpose), which is a row vector. Note that 𝑋𝑋𝑋 ∈ ℝ𝑛×𝑘,
𝑋𝑋𝑋𝑖 ∈ ℝ𝑘×1, and 𝑋𝑋𝑋′

𝑖 ∈ ℝ1×𝑘.

The data matrix for our example is:

𝑋𝑋𝑋 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

10.40 12 0
18.68 16 0
12.44 14 1
54.73 18 0
24.27 14 0
24.41 12 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

11



with data vectors:

𝑋𝑋𝑋1 = ⎛⎜
⎝

10.40
12
0

⎞⎟
⎠

𝑋𝑋𝑋2 = ⎛⎜
⎝

18.68
16
0

⎞⎟
⎠

𝑋𝑋𝑋3 = ⎛⎜
⎝

12.44
14
1

⎞⎟
⎠

⋮

Matrix Algebra

Vector and matrix algebra provide a compact mathematical representation of multivariate data
and an efficient framework for analyzing and implementing statistical methods. We will use
matrix algebra frequently throughout this course.

To refresh or enhance your knowledge of matrix algebra, consult the following resources:

Crash Course on Matrix Algebra:

matrix.svenotto.com (in particular Sections 1-3)
Section 19.1 of the Stock and Watson textbook also provides a brief overview of matrix
algebra concepts.

1.2 Datasets in R

R is a vector-based statistical programming language and is therefore particularly suitable for
handling data in tabular or matrix form. Matrix algebra is particularly useful when working
with real data in R.

R’s most common data structure for tabular data is the data frame (data.frame). Like the
data matrix 𝑋𝑋𝑋 we defined earlier, it organizes data with variables as columns and observations
as rows.
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CA Schools Data

Let’s load the CASchools dataset from the AER package (“Applied Econometrics with R”). You
can install the package with the command install.packages("AER").

data(CASchools, package = "AER")

The dataset is used throughout Sections 4–8 of Stock and Watson’s textbook Introduction to
Econometrics. It was collected in 1998 and captures California school characteristics including
test scores, teacher salaries, student demographics, and district-level metrics.

Variable Description Variable Description
district District identifier lunch % receiving free meals
school School name computer Number of computers
county County name expenditure Spending per student ($)
grades Through 6th or 8th income District avg income ($000s)
students Total enrollment english Non-native English (%)
teachers Teaching staff read Average reading score
calworks % CalWorks aid math Average math score

The Environment pane in RStudio’s top-right corner displays all objects currently in your
workspace, including the CASchools dataset. You can click on it to explore its contents.

The head() function displays the first few rows of a dataset, giving you a quick preview of its
content.

head(CASchools)

district school county grades students teachers
1 75119 Sunol Glen Unified Alameda KK-08 195 10.90
2 61499 Manzanita Elementary Butte KK-08 240 11.15
3 61549 Thermalito Union Elementary Butte KK-08 1550 82.90
4 61457 Golden Feather Union Elementary Butte KK-08 243 14.00
5 61523 Palermo Union Elementary Butte KK-08 1335 71.50
6 62042 Burrel Union Elementary Fresno KK-08 137 6.40
calworks lunch computer expenditure income english read math

1 0.5102 2.0408 67 6384.911 22.690001 0.000000 691.6 690.0
2 15.4167 47.9167 101 5099.381 9.824000 4.583333 660.5 661.9
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3 55.0323 76.3226 169 5501.955 8.978000 30.000002 636.3 650.9
4 36.4754 77.0492 85 7101.831 8.978000 0.000000 651.9 643.5
5 33.1086 78.4270 171 5235.988 9.080333 13.857677 641.8 639.9
6 12.3188 86.9565 25 5580.147 10.415000 12.408759 605.7 605.4

The variable students contains the total number of students enrolled in a school. It
is the fifth variable in the dataset. To access the variable as a vector, you can type
CASchools[,5] (the fifth column in your data matrix), CASchools[,"students"], or simply
CASchools$students.

We can easily add new variables to our data frame, for instance, the student-teacher ratio (the
total number of students per teacher) and the average test score (average of the math and
reading scores):

# compute student-teacher ratio and append it to CASchools
CASchools$STR = CASchools$students/CASchools$teachers
# compute test score and append it to CASchools
CASchools$score = (CASchools$read + CASchools$math)/2

Scatterplots provide further insights:

par(mfrow = c(1,3))
plot(score~STR, data = CASchools)
plot(score~income, data = CASchools)
plot(score~english, data = CASchools)
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The option par(mfrow = c(1,3)) allows you to display multiple plots side by side. Try what
happens if you replace c(1,3) with c(3,1).
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CPS Data

Another dataset we will use in this course is the CPS dataset from Bruce Hansen’s textbook
Econometrics.

The Current Population Survey (CPS) is a monthly survey conducted by the U.S. Census
Bureau for the Bureau of Labor Statistics, primarily used to measure the labor force status of
the U.S. population.

• Dataset: cps09mar.txt
• Codebook: cps09mar_description.pdf

The dataset is available as a whitespace-separated text file, which can be loaded using
read.table().

url = "https://users.ssc.wisc.edu/~bhansen/econometrics/cps09mar.txt"
varnames = c("age", "female", "hisp", "education", "earnings", "hours",

"week", "union", "uncov", "region", "race", "marital")
cps = read.table(url, col.names = varnames)

Let’s create additional variables:

# wage per hour
cps$wage = cps$earnings/(cps$week * cps$hours)
# work experience (years since graduation)
cps$experience = pmax(cps$age - cps$education - 6,0)
# married dummy (see codebook for the categories)
cps$married = (cps$marital %in% c(1, 2, 3)) |> as.numeric()
# Black dummy (see codebook)
cps$Black = (cps$race %in% c(2, 6, 10, 11, 12, 15, 16, 19)) |> as.numeric()
# Asian dummy (see codebook)
cps$Asian = (cps$race %in% c(4, 8, 11, 13, 14, 16, 17, 18, 19)) |> as.numeric()

A person is considered married if the marital variable takes one of the following categories:
1, 2, or 3 (see the codebook above for more information). Note that cps$marital %in% c(1,
2, 3) is a logical expression with either TRUE or FALSE values. The command as.numeric()
creates a dummy variable by translating TRUE to 1 and FALSE to 0.

The pipe operator |> efficiently chains commands. It passes the output of one function as the
input to another. For example, cps$marital %in% c(1, 2, 3) |> as.numeric() gives the
same output as as.numeric(cps$marital %in% c(1, 2, 3)).

We will need the CPS dataset later, so it is a good idea to save the dataset to your computer:
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write.csv(cps, "cps.csv", row.names = FALSE)

This command saves the dataset to a file named cps.csv in your current working directory.
It’s best practice to use an R Project for your course work so that all files (data, scripts,
outputs) are stored in a consistent and organized folder structure.

To read the data back into R later, just type cps = read.csv("cps.csv").

1.3 Statistical Framework

Data are usually the result of a random experiment. The gender of the next person you
meet, the daily fluctuation of a stock price, the monthly music streams of your favorite artist,
the annual number of pizzas consumed - all of this information involves a certain amount of
randomness.

We distinguish between:

• Cross-sectional data: observations on many units at (approximately) one point in
time.

• Time series data: observations on one unit recorded over multiple time periods.
• Panel data: observations on many units recorded over multiple time periods.

In statistical sciences, we interpret a univariate dataset 𝑌1, … , 𝑌𝑛 as a sequence of random
variables. Similarly, a multivariate dataset 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 is viewed as a sequence of random
vectors.

Sampling refers to the process of obtaining data by drawing observations from a population,
which is often considered infinite in statistical theory. An infinite population is a conceptual
device representing all potential outcomes that could arise under the same conditions, not just
the currently existing individuals.

For example, when modeling coin flips, the population includes every possible toss that could
ever occur. When analyzing stock returns, the population includes all possible future price
movements. When studying human height, the infinite population includes all current humans
as well as all hypothetical humans who could exist under similar biological conditions. Formally,
the infinite population corresponds to a probability distribution 𝐹 and the sample is 𝑛 i.i.d.
draws from 𝐹 .
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Random sampling

Econometric methods require specific assumptions about sampling processes. The ideal ap-
proach for a cross-sectional study is simple random sampling, where each individual from the
population has an equal chance of being selected independently.

This produces observations 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 that are both identically distributed (drawn from the
same population) and independently drawn (as if drawn from an urn with replacement). We
call these data independent and identically distributed (i.i.d.) or simply a random
sample.

For example, when conducting a representative survey, the answers of the second randomly
selected individual should not depend on the answers of the first randomly selected individual
if the individuals are truly randomly selected from the population. A violation of the i.i.d.
property is often a matter of data collection quality.

Clustered sampling

While i.i.d. sampling provides a clean theoretical foundation, real-world data sometimes exhibit
clustering - where observations are naturally grouped or nested within larger units. This
clustering leads to dependencies that violate the i.i.d. assumption:

In cross-sectional studies, clustering occurs when we collect data on individual units that belong
to distinct groups. Consider a study on student achievement where researchers randomly select
schools, then collect data from all students within those schools:

• Although schools might be selected independently, observations at the student level are
dependent

• Students within the same school share common environments (facilities, resources, ad-
ministration)

• They experience similar teaching quality and educational policies and they influence each
other through peer effects and social interactions

For instance, if School A has an exceptional mathematics department, all students from that
school may perform better in math tests compared to students with similar abilities in other
schools.

Panel data, by its very nature, introduces clustering across both cross-sectional units and time.
If many randomly selected individuals are interviewed over many years, then the observations of
two different individuals are independent but, for each individual, observations across different
years are dependent due to persistent personal factors.
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Time dependence

Time series and panel data are intrinsically not independent due to the sequential nature of
the observations. We usually expect observations close in time to be strongly dependent and
observations at greater temporal distances to be less dependent.

Consider the quarterly GDP growth rates for Germany in the dataset gdpgr. Unlike cross-
sectional data where the ordering of observations is arbitrary, the chronological ordering in
time series carries crucial information about the dependency structure.

library(TeachData)
plot(gdpgr)

Time

gd
pg

r

1995 2000 2005 2010 2015 2020 2025

−
0.

05
0.

05
0.

10

1.4 R Code

statistics-sec01.R
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2 Distribution

Probability Distribution

An event is a collection of different outcomes, typically in form of open, half-open, or closed
intervals, or unions of multiple intervals.

The probability distribution 𝐹𝑌 assigns probabilities to all possible events of 𝑌 . The cumula-
tive distribution function (CDF) fully characterizes the probability distribution:

Cumulative Distribution Function (CDF)

The CDF of a random variable 𝑌 is

𝐹𝑌 (𝑎) ∶= 𝑃(𝑌 ≤ 𝑎), 𝑎 ∈ ℝ.

Any nondecreasing right-continuous function 𝐹𝑌 (𝑎) with lim𝑎→−∞ 𝐹𝑌 (𝑎) = 0 and
lim𝑎→+∞ 𝐹𝑌 (𝑎) = 1 defines a valid CDF.

For a more detailed introduction to probability theory, see my tutorial at probabil-
ity.svenotto.com.

2.1 Discrete Random Variables

Coin Toss

Consider the coin toss binary random variable

𝑌 = {1 if outcome is heads,
0 if outcome is tails.

The CDF for a fair coin is

𝐹𝑌 (𝑎) =
⎧{
⎨{⎩

0 𝑎 < 0,
0.5 0 ≤ 𝑎 < 1,
1 𝑎 ≥ 1,
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Figure 2.1: CDF of coin (discrete random variable)

with the following CDF plot:

A random variable with a CDF that has jumps and is flat between these jumps is called a
discrete random variable.

Let 𝐹𝑌 (𝑎−) = lim𝜀→0,𝜀>0 𝐹𝑌 (𝑎 − 𝜀) denote the left limit of 𝐹𝑌 at 𝑎.
That means, for the coin toss, we have point values 𝐹𝑌 (0) = 0.5 and 𝐹𝑌 (1) = 1 and the
left-hand limits 𝐹𝑌 (0−) = 0 and 𝐹𝑌 (1−) = 0.5.
The point probability 𝑃(𝑌 = 𝑎) represents the size of the jump at 𝑎 in the CDF 𝐹𝑌 (𝑎):

𝑃(𝑌 = 𝑎) = 𝐹𝑌 (𝑎) − 𝐹𝑌 (𝑎−).

Because CDFs are right-continuous, jumps can only be seen when approaching a point 𝑎 from
the left.

Probability Mass Function (PMF)

The probability mass function (PMF) of a discrete random variable 𝑌 is

𝜋𝑌 (𝑎) ∶= 𝑃(𝑌 = 𝑎) = 𝐹𝑌 (𝑎) − 𝐹𝑌 (𝑎−), 𝑎 ∈ ℝ.

The PMF of the coin variable is

𝜋𝑌 (𝑎) = 𝑃(𝑌 = 𝑎) = {0.5 if 𝑎 ∈ {0, 1},
0 otherwise.
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(a) CDF of coin (b) PMF of coin

Figure 2.2: Coin variable: CDF (left) and PMF (right)

Years of Education

Suppose you conduct a survey where you ask a randomly selected person about their years of
education, with the following answer options:

𝑌 ∈ {10, 12, 14, 16, 18, 21}.

The education variable is a discrete random variable. It may have the following CDF and
PMF:

(a) CDF of education (b) PMF of education

Figure 2.3: Education variable: CDF (left) and PMF (right)
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Here, the PMF is

𝜋𝑌 (𝑎) =

⎧{{{{{
⎨{{{{{⎩

0.06 if 𝑎 = 10
0.43 if 𝑎 = 12
0.16 if 𝑎 = 14
0.08 if 𝑎 = 16
0.24 if 𝑎 = 18
0.03 if 𝑎 = 21
0 otherwise

The support 𝒴 is the set of all values that 𝑌 can take with non-zero probability: 𝒴 = {𝑎 ∈
ℝ ∶ 𝜋𝑌 (𝑎) > 0}.
For the coin variable, the support is 𝒴 = {0, 1}, while for the education variable, the support
is 𝒴 = {10, 12, 14, 16, 18, 21}.
The sum of 𝜋𝑌 (𝑎) over the support is 1: ∑𝑎∈𝒴 𝜋𝑌 (𝑎) = 1.
For the tail probabilities we have the following rules:

• 𝑃(𝑌 ≤ 𝑎) = 𝐹𝑌 (𝑎)
• 𝑃(𝑌 < 𝑎) = 𝐹𝑌 (𝑎−) = 𝐹𝑌 (𝑎) − 𝜋𝑌 (𝑎)
• 𝑃(𝑌 > 𝑎) = 1 − 𝐹𝑌 (𝑎)
• 𝑃(𝑌 ≥ 𝑎) = 1 − 𝐹𝑌 (𝑎−) = 1 − 𝐹𝑌 (𝑎) + 𝜋𝑌 (𝑎)

For intervals (with 𝑎 < 𝑏):

• 𝑃(𝑎 < 𝑌 ≤ 𝑏) = 𝐹𝑌 (𝑏) − 𝐹𝑌 (𝑎)
• 𝑃(𝑎 < 𝑌 < 𝑏) = 𝐹𝑌 (𝑏−) − 𝐹𝑌 (𝑎)
• 𝑃(𝑎 ≤ 𝑌 ≤ 𝑏) = 𝐹𝑌 (𝑏) − 𝐹𝑌 (𝑎−)
• 𝑃(𝑎 ≤ 𝑌 < 𝑏) = 𝐹𝑌 (𝑏−) − 𝐹𝑌 (𝑎−)

2.2 Continuous Random Variables

For a continuous random variable 𝑌 , the CDF 𝐹𝑌 (𝑎) has no jumps and is continuous. The left
limits 𝐹𝑌 (𝑎−) equal the point values 𝐹𝑌 (𝑎) for all 𝑎, which means that the point probabilities
are zero:

𝑃(𝑌 = 𝑎) = 𝐹𝑌 (𝑎) − 𝐹𝑌 (𝑎−) = 0.

Probability is distributed continuously over intervals. Unlike discrete random variables, which
are characterized by both the PMF and the CDF, continuous variables have 𝜋𝑌 (𝑎) = 𝑃(𝑌 =
𝑎) = 0 for every point, so the PMF is not a useful concept here.
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Instead, they are described by the probability density function (PDF), which serves as the
continuous analogue of the PMF. If the CDF is differentiable, the PDF is given by its deriva-
tive:

Probability Density Function (PDF)

The probability density function (PDF) or simply density function of a continuous
random variable 𝑌 is the derivative of its CDF:

𝑓𝑌 (𝑎) = 𝑑
𝑑𝑎𝐹𝑌 (𝑎).

Conversely, the CDF can be obtained from the PDF by integration:

𝐹𝑌 (𝑎) = ∫
𝑎

−∞
𝑓𝑌 (𝑢) 𝑑𝑢

Wage per hour

If you ask a random person about their income per working hour in EUR, there are infinitely
many potential answers. Any (non-negative) real number may be an outcome. The set of
possible results of such a random variable is a continuum of different wage levels.

The CDF and PDF of wage may have the following form:

(a) CDF of wage (b) PDF of wage

Figure 2.4: Wage variable: CDF (left) and PDF (right)

Basic Rules for Continuous Random Variables (with 𝑎 ≤ 𝑏):

• 𝑃(𝑌 = 𝑎) = ∫𝑎
𝑎 𝑓𝑌 (𝑢) 𝑑𝑢 = 0
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• 𝑃(𝑌 ≤ 𝑎) = 𝑃 (𝑌 < 𝑎) = 𝐹𝑌 (𝑎) = ∫𝑎
−∞ 𝑓𝑌 (𝑢) 𝑑𝑢

• 𝑃(𝑌 > 𝑎) = 𝑃 (𝑌 ≥ 𝑎) = 1 − 𝐹𝑌 (𝑎) = ∫∞
𝑎 𝑓𝑌 (𝑢) 𝑑𝑢

• 𝑃(𝑎 < 𝑌 < 𝑏) = 𝐹𝑌 (𝑏) − 𝐹𝑌 (𝑎) = ∫𝑏
𝑎 𝑓𝑌 (𝑢) 𝑑𝑢

• 𝑃(𝑎 < 𝑌 < 𝑏) = 𝑃 (𝑎 < 𝑌 ≤ 𝑏) = 𝑃(𝑎 ≤ 𝑌 ≤ 𝑏) = 𝑃(𝑎 ≤ 𝑌 < 𝑏)

Unlike the PMF, which directly gives probabilities, the PDF does not represent probability
directly. Instead, the probability is given by the area under the PDF curve over an interval.

It is important to note that for continuous random variables, the probability of any single point
is zero. This is why, as shown in the last rule above, the inequalities (strict or non-strict) don’t
affect the probability calculations for intervals. This stands in contrast to discrete random
variables, where the inclusion of endpoints can change the probability value.

2.3 Conditional Distribution

The distribution of wage may differ between men and women. Similarly, the distribution of
education may vary between married and unmarried individuals. In contrast, the distribution
of a coin flip should remain the same regardless of whether the person tossing the coin earns
15 or 20 EUR per hour.

The conditional cumulative distribution function (conditional CDF),

𝐹𝑌 |𝑍=𝑏(𝑎) = 𝐹𝑌 |𝑍(𝑎|𝑏) = 𝑃(𝑌 ≤ 𝑎|𝑍 = 𝑏),

represents the distribution of a random variable 𝑌 given that another random variable 𝑍 takes
a specific value 𝑏. It answers the question: “If we know that 𝑍 = 𝑏, what is the distribution
of 𝑌 ?”

For example, suppose that 𝑌 represents wage and 𝑍 represents education:

• 𝐹𝑌 |𝑍=12(𝑎) is the CDF of wages among individuals with 12 years of education.
• 𝐹𝑌 |𝑍=14(𝑎) is the CDF of wages among individuals with 14 years of education.
• 𝐹𝑌 |𝑍=18(𝑎) is the CDF of wages among individuals with 18 years of education.

Since wage is a continuous variable, its conditional distribution given any specific value of
another variable is usually also continuous. The conditional density of 𝑌 given 𝑍 = 𝑏 is
defined as the derivative of the conditional CDF:

𝑓𝑌 |𝑍=𝑏(𝑎) = 𝑓𝑌 |𝑍(𝑎|𝑏) = 𝑑
𝑑𝑎𝐹𝑌 |𝑍=𝑏(𝑎).

We observe that the distribution of wage varies across different levels of education. For example,
individuals with fewer years of education are more likely to earn less than 20 EUR per hour:

𝑃(𝑌 ≤ 20|𝑍 = 12) = 𝐹𝑌 |𝑍=12(20) > 𝐹𝑌 |𝑍=18(20) = 𝑃(𝑌 ≤ 20|𝑍 = 18).
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(a) Conditional CDFs of wage given education (b) Conditional PDFs of wage given education

Figure 2.5: Wage distributions conditional on education level

Because the conditional distribution of 𝑌 given 𝑍 = 𝑏 depends on the value 𝑏 of 𝑍, we say
that the random variables 𝑌 and 𝑍 are dependent random variables.

Note that the conditional CDF 𝐹𝑌 |𝑍=𝑏(𝑎) can only be defined for values of 𝑏 in the support of
𝑍.

We can also condition on more than one variable. Let 𝑍1 represent the labor market experience
in years and 𝑍2 be the female dummy variable. The conditional CDF of 𝑌 given 𝑍1 = 𝑏 and
𝑍2 = 𝑐 is:

𝐹𝑌 |𝑍1=𝑏,𝑍2=𝑐(𝑎) = 𝐹𝑌 |𝑍1,𝑍2
(𝑎|𝑏, 𝑐) = 𝑃(𝑌 ≤ 𝑎|𝑍1 = 𝑏, 𝑍2 = 𝑐).

For example:

• 𝐹𝑌 |𝑍1=10,𝑍2=1(𝑎) is the CDF of wages among women with 10 years of experience.
• 𝐹𝑌 |𝑍1=10,𝑍2=0(𝑎) is the CDF of wages among men with 10 years of experience.

Clearly, the random variable 𝑌 and the random vector (𝑍1, 𝑍2) are dependent.

More generally, we can condition on the event that a 𝑘-variate random vector 𝑍𝑍𝑍 = (𝑍1, … , 𝑍𝑘)′

takes the value {𝑍𝑍𝑍 = 𝑏𝑏𝑏}, i.e., {𝑍1 = 𝑏1, … , 𝑍𝑘 = 𝑏𝑘}. The conditional CDF of 𝑌 given {𝑍𝑍𝑍 = 𝑏𝑏𝑏}
is

𝐹𝑌 |𝑍𝑍𝑍=𝑏𝑏𝑏(𝑎) = 𝐹𝑌 |𝑍1=𝑏1,…,𝑍𝑘=𝑏𝑘
(𝑎).

The variable of interest, 𝑌 , can also be discrete. Then, any conditional CDF of 𝑌 is also
discrete. Below is the conditional CDF of education given the married dummy variable:

• 𝐹𝑌 |𝑍=0(𝑎) is the CDF of education among unmarried individuals.
• 𝐹𝑌 |𝑍=1(𝑎) is the CDF of education among married individuals.
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(a) Conditional CDFs (b) Conditional PDFs

Figure 2.6: Wage distributions conditional on 10 years of experience and gender

Figure 2.7: Conditional CDFs of education given married

(a) Education given unmarried (b) Education given married

Figure 2.8: Conditional PMFs of education for unmarried (left) and married (right) individuals
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The conditional PMFs 𝜋𝑌 |𝑍=0(𝑎) = 𝑃(𝑌 = 𝑎|𝑍 = 0) and 𝜋𝑌 |𝑍=1(𝑎) = 𝑃(𝑌 = 𝑎|𝑍 = 1)
indicate the jump heights of 𝐹𝑌 |𝑍=0(𝑎) and 𝐹𝑌 |𝑍=1(𝑎) at 𝑎.
Clearly, education and married are dependent random variables. For example, 𝜋𝑌 |𝑍=0(12) >
𝜋𝑌 |𝑍=1(12) and 𝜋𝑌 |𝑍=0(18) < 𝜋𝑌 |𝑍=1(18).
In contrast, consider 𝑌 = coin flip and 𝑍 = married dummy variable. The CDF of a coin flip
should be the same for married or unmarried individuals:

(a) Coin flip given unmarried (b) Coin flip given married

Figure 2.9: Conditional CDFs of a coin flip for unmarried (left) and married (right) individuals

Because
𝐹𝑌 (𝑎) = 𝐹𝑌 |𝑍=0(𝑎) = 𝐹𝑌 |𝑍=1(𝑎) for all 𝑎

we say that 𝑌 and 𝑍 are independent random variables.

2.4 Joint Distribution

When we have two random variables 𝑌 and 𝑍, we need to understand three related concepts:

1) Joint distribution: How 𝑌 and 𝑍 behave together
2) Marginal distributions: How 𝑌 and 𝑍 behave individually
3) Conditional distributions: How 𝑌 behaves given information about 𝑍 (and vice versa)

Marginal and Joint Distributions

The joint CDF describes the probability that both variables simultaneously fall below specified
values:

𝐹𝑌 ,𝑍(𝑎, 𝑏) = 𝑃(𝑌 ≤ 𝑎, 𝑍 ≤ 𝑏).
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The marginal CDFs are obtained by “sending the other coordinate to +∞”:

𝐹𝑌 (𝑎) = lim
𝑏→∞

𝐹𝑌 ,𝑍(𝑎, 𝑏) = 𝑃(𝑌 ≤ 𝑎),
𝐹𝑍(𝑏) = lim

𝑎→∞
𝐹𝑌 ,𝑍(𝑎, 𝑏) = 𝑃(𝑍 ≤ 𝑏).

Figure 2.10: Example: Joint CDF of wage and experience

(a) Marginal CDF of experience (b) Marginal CDF of wage

Figure 2.11: Marginal CDFs of experience (left) and wage (right)

When both variables are continuous, the joint PDF is

𝑓𝑌 ,𝑍(𝑎, 𝑏) = 𝜕2

𝜕𝑎 𝜕𝑏𝐹𝑌 ,𝑍(𝑎, 𝑏)
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and the marginal PDFs are

𝑓𝑌 (𝑎) = ∫
∞

−∞
𝑓𝑌 ,𝑍(𝑎, 𝑣) 𝑑𝑣, 𝑓𝑍(𝑏) = ∫

∞

−∞
𝑓𝑌 ,𝑍(𝑢, 𝑏) 𝑑𝑢.

Figure 2.12: Example: Joint PDF of wage and experience

When both variables are discrete, the joint PMF is

𝜋𝑌 ,𝑍(𝑎, 𝑏) = 𝑃(𝑌 = 𝑎, 𝑍 = 𝑏),
and the marginal PMFs are

𝜋𝑌 (𝑎) = ∑
𝑣∈𝒵

𝜋𝑌 ,𝑍(𝑎, 𝑣), 𝜋𝑍(𝑏) = ∑
𝑢∈𝒴

𝜋𝑌 ,𝑍(𝑢, 𝑏),

where 𝒴 and 𝒵 are the supports of 𝑌 and 𝑍.

Conditional and Joint Distributions

If 𝑍 is continuous (with 𝑓𝑍(𝑏) > 0):

𝐹𝑌 |𝑍=𝑏(𝑎) = ∫
𝑎

−∞
𝑓𝑌 |𝑍=𝑏(𝑢) 𝑑𝑢 =

𝜕
𝜕𝑏𝐹𝑌 ,𝑍(𝑎, 𝑏)

𝑓𝑍(𝑏) .

If 𝑍 is discrete (with 𝑏 ∈ 𝒵):

𝐹𝑌 |𝑍=𝑏(𝑎) = ∑
𝑢∈𝒴,𝑢≤𝑎

𝜋𝑌 |𝑍=𝑏(𝑢) = 𝐹𝑌 ,𝑍(𝑎, 𝑏) − 𝐹𝑌 ,𝑍(𝑎, 𝑏−)
𝐹𝑍(𝑏) − 𝐹𝑍(𝑏−) .
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In general or mixed cases, the conditional CDF can be defined through limits:

𝐹𝑌 |𝑍=𝑏(𝑎) = lim
𝜖→0,𝜖>0

𝐹𝑌 ,𝑍(𝑎, 𝑏 + 𝜖) − 𝐹𝑌 ,𝑍(𝑎, 𝑏 − 𝜖)
𝐹𝑍(𝑏 + 𝜖) − 𝐹𝑍(𝑏 − 𝜖) .

Recovering the Joint from Conditionals

At the CDF level (Riemann-Stieltjes form), the joint can be built from a conditional and the
other variable’s marginal:

𝐹𝑌 ,𝑍(𝑎, 𝑏) = ∫
𝑏

−∞
𝐹𝑌 |𝑍=𝑣(𝑎) 𝑑𝐹𝑍(𝑣) = ∫

𝑎

−∞
𝐹𝑍|𝑌 =𝑢(𝑏) 𝑑𝐹𝑌 (𝑢).

Special cases:

• If 𝑍 is continuous:

𝐹𝑌 ,𝑍(𝑎, 𝑏) = ∫
𝑏

−∞
𝐹𝑌 |𝑍=𝑣(𝑎)𝑓𝑍(𝑣) 𝑑𝑣,

• If 𝑍 is discrete:
𝐹𝑌 ,𝑍(𝑎, 𝑏) = ∑

𝑣∈𝒵,𝑣≤𝑏
𝐹𝑌 |𝑍=𝑣(𝑎)𝜋𝑍(𝑣).

• If 𝑌 is continuous:
𝐹𝑌 ,𝑍(𝑎, 𝑏) = ∫

𝑎

−∞
𝐹𝑍|𝑌 =𝑢(𝑏)𝑓𝑌 (𝑢) 𝑑𝑢.

• If 𝑌 is discrete:
𝐹𝑌 ,𝑍(𝑎, 𝑏) = ∑

𝑢∈𝒴,𝑢≤𝑎
𝐹𝑍|𝑌 =𝑢(𝑏)𝜋𝑌 (𝑢).

For PDF/PMF, the product rules are:

𝑓𝑌 ,𝑍(𝑎, 𝑏) = 𝑓𝑍|𝑌 =𝑎(𝑏)𝑓𝑌 (𝑎) = 𝑓𝑌 |𝑍=𝑏(𝑎)𝑓𝑍(𝑏),
𝜋𝑌 ,𝑍(𝑎, 𝑏) = 𝜋𝑍|𝑌 =𝑎(𝑏)𝜋𝑌 (𝑎) = 𝜋𝑌 |𝑍=𝑏(𝑎)𝜋𝑍(𝑏).

2.5 Independence of Random Variables

In the previous section, we saw that the distribution of a coin flip remains the same regardless
of a person’s marital status, illustrating the concept of independence. Let’s now formalize this
important concept.

Independence
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𝑌 and 𝑍 are independent if and only if

𝐹𝑌 |𝑍=𝑏(𝑎) = 𝐹𝑌 (𝑎) for all 𝑎 and 𝑏.

Note that if 𝐹𝑌 |𝑍=𝑏(𝑎) = 𝐹𝑌 (𝑎) for all 𝑏, then automatically 𝐹𝑍|𝑌 =𝑎(𝑏) = 𝐹𝑍(𝑏) for all 𝑎. Due
to this symmetry we can equivalently define independence through the property 𝐹𝑍|𝑌 =𝑎(𝑏) =
𝐹𝑍(𝑏).

Technical Note: Mathematically, the condition is required to hold only for almost
every 𝑏. That is, for all 𝑏 except on a set with probability zero under 𝑍. Intuitively,
it only needs to hold on the values that 𝑍 can actually take. For example, if 𝑍 is
wage and wages can’t be negative, the condition need not hold for negative 𝑏.

The definition naturally generalizes to 𝑍1, 𝑍2, 𝑍3 in a sequential chain form. They are mutu-
ally independent if

(i) 𝐹𝑍2|𝑍1=𝑏1
(𝑎) = 𝐹𝑍2

(𝑎),
(ii) 𝐹𝑍3|𝑍1=𝑏1,𝑍2=𝑏2

(𝑎) = 𝐹𝑍3
(𝑎),

for all 𝑎 and for (almost) all (𝑏1, 𝑏2).
Mutual Independence

The random variables 𝑍1, … , 𝑍𝑛 are mutually independent if and only if, for each 𝑖 =
2, … , 𝑛,

𝐹𝑍𝑖|𝑍1=𝑏1,…,𝑍𝑖−1=𝑏𝑖−1
(𝑎) = 𝐹𝑍𝑖

(𝑎)
for all 𝑎 and (almost) all (𝑏1, … , 𝑏𝑖−1).

An equivalent viewpoint uses the joint CDF of the vector 𝑍𝑍𝑍 = (𝑍1, … , 𝑍𝑛)′:

𝐹𝑍𝑍𝑍(𝑎𝑎𝑎) = 𝐹𝑍1,…,𝑍𝑛
(𝑎1, … , 𝑎𝑛) = 𝑃(𝑍1 ≤ 𝑎1, … , 𝑍𝑛 ≤ 𝑎𝑛).

Then, 𝑍1, … , 𝑍𝑛 are mutually independent if and only if

𝐹𝑍𝑍𝑍(𝑎𝑎𝑎) = 𝐹𝑍1
(𝑎1) ⋯ 𝐹𝑍𝑛

(𝑎𝑛) for all 𝑎1, … , 𝑎𝑛.
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2.6 Independent and Identically Distributed

An important concept in statistics is that of an independent and identically distributed (i.i.d.)
sample. This arises naturally when we consider multiple random variables that share the same
distribution and do not influence each other.

i.i.d. Sample / Random Sample

A collection of random variables 𝑌1, … , 𝑌𝑛 is i.i.d. (independent and identically distributed)
if:

1. They are mutually independent: for each 𝑖 = 2, … , 𝑛,

𝐹𝑌𝑖|𝑌1=𝑏1,…,𝑌𝑖−1=𝑏𝑖−1
(𝑎) = 𝐹𝑌𝑖

(𝑎)

for all 𝑎 and (almost) all (𝑏1, … , 𝑏𝑖−1).
2. They have the same distribution function: 𝐹𝑌𝑖

(𝑎) = 𝐹(𝑎) for all 𝑖 = 1, … , 𝑛 and all 𝑎.

For example, consider 𝑛 coin flips, where each 𝑌𝑖 represents the outcome of the 𝑖-th flip
(with 𝑌𝑖 = 1 for heads and 𝑌𝑖 = 0 for tails). If the coin is fair and the flips are performed
independently, then 𝑌1, … , 𝑌𝑛 form an i.i.d. sample with

𝐹(𝑎) = 𝐹𝑌𝑖
(𝑎) =

⎧{
⎨{⎩

0 𝑎 < 0
0.5 0 ≤ 𝑎 < 1
1 𝑎 ≥ 1

for all 𝑖 = 1, … , 𝑛.

Similarly, if we randomly select 𝑛 individuals from a large population and measure their wages,
the resulting measurements 𝑌1, … , 𝑌𝑛 can be treated as an i.i.d. sample. Each 𝑌𝑖 follows the
same distribution (the wage distribution in the population), and knowledge of one person’s
wage doesn’t affect the distribution of another’s. The function 𝐹 is called the population
distribution or the data-generating process (DGP).

2.7 Independence of Random Vectors

Often in practice, we work with multiple variables recorded for different individuals or time
points. For example, consider two random vectors:

𝑋𝑋𝑋1 = (𝑋11, … , 𝑋1𝑘)′, 𝑋𝑋𝑋2 = (𝑋21, … , 𝑋2𝑘)′.
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The conditional distribution function of 𝑋𝑋𝑋1 given that 𝑋𝑋𝑋2 takes the value 𝑏𝑏𝑏 = (𝑏1, … , 𝑏𝑘)′ is

𝐹𝑋𝑋𝑋1|𝑋𝑋𝑋2=𝑏𝑏𝑏(𝑎𝑎𝑎) = 𝑃(𝑋𝑋𝑋1 ≤ 𝑎𝑎𝑎|𝑋𝑋𝑋2 = 𝑏𝑏𝑏),

where the vector inequality 𝑋𝑋𝑋1 ≤ 𝑎𝑎𝑎 means the componentwise inequalities 𝑋1𝑗 ≤ 𝑎𝑗 for all
𝑗 = 1, … , 𝑘 hold.

For instance, if 𝑋𝑋𝑋1 and 𝑋𝑋𝑋2 represent the survey answers of two different, randomly chosen
people, then 𝐹𝑋𝑋𝑋2|𝑋𝑋𝑋1=𝑏𝑏𝑏(𝑎𝑎𝑎) describes the distribution of the second person’s answers, given that
the first person’s answers are 𝑏𝑏𝑏.
If the two people are truly randomly selected and unrelated to one another, we would not
expect 𝑋𝑋𝑋2 to depend on whether 𝑋𝑋𝑋1 equals 𝑏𝑏𝑏 or some other value 𝑐𝑐𝑐. In other words, knowing
𝑋𝑋𝑋1 provides no information that changes the distribution of 𝑋𝑋𝑋2.

Independence of Random Vectors

Two random vectors 𝑋𝑋𝑋1 and 𝑋𝑋𝑋2 are independent if and only if

𝐹𝑋𝑋𝑋1|𝑋𝑋𝑋2=𝑏𝑏𝑏(𝑎𝑎𝑎) = 𝐹𝑋𝑋𝑋1
(𝑎𝑎𝑎) for all 𝑎𝑎𝑎 and (almost) all 𝑏𝑏𝑏.

This definition extends naturally to mutual independence of 𝑛 random vectors 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛,
where 𝑋𝑋𝑋𝑖 = (𝑋𝑖1, … , 𝑋𝑖𝑘)′. They are called mutually independent if, for each 𝑖 = 2, … , 𝑛,

𝐹𝑋𝑋𝑋𝑖|𝑋𝑋𝑋1=𝑏𝑏𝑏1,…,𝑋𝑋𝑋𝑖−1=𝑏𝑏𝑏𝑖−1
(𝑎𝑎𝑎) = 𝐹𝑋𝑋𝑋𝑖

(𝑎𝑎𝑎)

for all 𝑎𝑎𝑎 and (almost) all (𝑏𝑏𝑏1, … ,𝑏𝑏𝑏𝑖−1).
Hence, in an independent sample, what the 𝑖-th randomly chosen person answers does not
depend on anyone else’s answers.

i.i.d. Sample of Random Vectors

The concept of i.i.d. samples naturally extends to random vectors. A collection of random
vectors 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 is i.i.d. if they are mutually independent and have the same distribution
function 𝐹 . Formally,

𝐹𝑋𝑋𝑋𝑖|𝑋𝑋𝑋1=𝑏𝑏𝑏1,…,𝑋𝑋𝑋𝑖−1=𝑏𝑏𝑏𝑖−1
(𝑎𝑎𝑎) = 𝐹(𝑎𝑎𝑎)

for all 𝑖 = 1, … , 𝑛, for all 𝑎𝑎𝑎, and (almost) all (𝑏𝑏𝑏1, … ,𝑏𝑏𝑏𝑖−1).
An i.i.d. dataset (or random sample) is one where each multivariate observation not only
comes from the same population distribution 𝐹 but is independent of the others.
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2.8 PMF and PDF Estimation

PMF estimation

With i.i.d. data 𝑌1, … , 𝑌𝑛 from a discrete random variable 𝑌 with support 𝒴, the PMF 𝜋𝑌 (𝑎)
can be estimated by the empirical PMF

̂𝜋𝑌 (𝑎) = 𝑛(𝑎)
𝑛 , 𝑎 ∈ 𝒴

where 𝑛(𝑎) is the count of observations equal to 𝑎.
Let’s load the CPS data from Section 1 and estimate the PMF for region (1 = Northeast, 2 =
Midwest, 3 = South, 4 = West):

cps = read.csv("cps.csv")
n = length(cps$region) #sample size
pmf = table(cps$region)/n #relative frequencies
pmf

1 2 3 4
0.1911434 0.2369832 0.3169761 0.2548973

barplot(pmf,
names.arg = c("Northeast", "Midwest", "South", "West"))
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PDF estimation

Histogram

For continuous data, a histogram provides an intuitive estimate of the PDF.

A histogram divides the data range into 𝐵 bins, each of equal width ℎ, and counts the number
of observations 𝑛𝑗 within each bin.

The histogram density estimator is

̂𝑓𝑌 (𝑎) = 𝑛𝑗
𝑛ℎ for 𝑎 in bin 𝑗,

so the total area of the rectangles sums to 1.

Kernel density estimator

Suppose we want to estimate the experience density at 𝑎 = 21 and consider the histogram
density estimate with ℎ = 5. It is based on the frequency of observations in the interval [20, 25)
which is a skewed window about 𝑎 = 21.
It seems more sensible to center the window at 21, for example [18.5, 23.5) instead of [20, 25).
It also seems sensible to give more weight to observations close to 21 and less to those at the
edge of the window.

This idea leads to the kernel density estimator of 𝑓𝑌 (𝑎), which is a smooth version of the
histogram:

̂𝑓𝑌 (𝑎) = 1
𝑛ℎ

𝑛
∑
𝑖=1

𝐾(𝑎 − 𝑌𝑖
ℎ ).

Here, 𝐾(𝑢) represents a weighting function known as a kernel function, and ℎ > 0 is the
bandwidth. A common choice for 𝐾(𝑢) is the Gaussian kernel:

𝐾(𝑢) = 𝜙(𝑢) = 1√
2𝜋 exp(−𝑢2/2).

par(mfrow = c(1,2))
plot(density(cps$experience))
hist(cps$experience, probability=TRUE)
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The hist() and density() functions in R automatically choose default values for the number
of bins 𝐵 and the bandwidth ℎ.

2.9 R Code

statistics-sec02.R
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3 Moments

In practice, we are interested in characteristics (parameters) of a population distribution,
such as the mean or variance of a variable, or correlations between multiple variables. These
characteristics are related to the population moments of a distribution.

While the population distribution and its population moments are unobserved, we can learn
about these characteristics using the sample moments of a univariate dataset 𝑌1, … , 𝑌𝑛 or a
multivariate dataset 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛. The ideal scenario is that the dataset forms an i.i.d. sample
from the underlying population distribution of interest.

3.1 Sample Moments

The 𝑟-th sample moment about the origin (also called the 𝑟-th empirical moment) of a
univariate sample 𝑌1, … , 𝑌𝑛 is defined as

𝑌 𝑟 = 1
𝑛

𝑛
∑
𝑖=1

𝑌 𝑟
𝑖 .

For example, the first sample moment (𝑟 = 1) is the sample mean (arithmetic mean):

𝑌 = 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖.

The sample mean is the most common measure of central tendency in a sample.

3.2 Population Moments

The population counterpart of the sample mean is the expected value.
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Discrete Random Variables

The expected value, also called expectation or (population) mean, of a discrete random
variable 𝑌 with PMF 𝜋𝑌 (⋅) and support 𝒴 is defined as

𝐸[𝑌 ] = ∑
𝑢∈𝒴

𝑢 𝜋𝑌 (𝑢).

The r-th moment (or r-th raw moment) is
𝐸[𝑌 𝑟] = ∑

𝑢∈𝒴
𝑢𝑟 𝜋𝑌 (𝑢).

Suppose the education variable has the following PMF:

𝜋𝑌 (𝑎) = 𝑃(𝑌 = 𝑎) =

⎧{{{{{{{
⎨{{{{{{{⎩

0.008 if 𝑎 = 4
0.048 if 𝑎 = 10
0.392 if 𝑎 = 12
0.072 if 𝑎 = 13
0.155 if 𝑎 = 14
0.071 if 𝑎 = 16
0.225 if 𝑎 = 18
0.029 if 𝑎 = 21
0 otherwise

Then, the expected value of education is calculated by summing over all possible values:
𝐸[𝑌 ] = 4 ⋅ 𝜋𝑌 (4) + 10 ⋅ 𝜋𝑌 (10) + 12 ⋅ 𝜋𝑌 (12)

+ 13 ⋅ 𝜋𝑌 (13) + 14 ⋅ 𝜋𝑌 (14) + 16 ⋅ 𝜋𝑌 (16)
+ 18 ⋅ 𝜋𝑌 (18) + 21 ⋅ 𝜋𝑌 (21) = 14.117

A binary random variable 𝑌 has support 𝒴 = {0, 1}. The probabilities are

• 𝜋𝑌 (1) = 𝑃 (𝑌 = 1) = 𝑝
• 𝜋𝑌 (0) = 𝑃 (𝑌 = 0) = 1 − 𝑝

for some 𝑝 ∈ [0, 1]. The expected value of 𝑌 is:
𝐸[𝑌 ] = 0 ⋅ 𝜋𝑌 (0) + 1 ⋅ 𝜋𝑌 (1)

= 0 ⋅ (1 − 𝑝) + 1 ⋅ 𝑝
= 𝑝.

For the variable coin, the probability of heads is 𝑝 = 0.5 and the expected value is 𝐸[𝑌 ] = 𝑝 =
0.5.
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Continuous Random Variables

The expected value of a continuous random variable 𝑌 with PDF 𝑓𝑌 (⋅) is

𝐸[𝑌 ] = ∫
∞

−∞
𝑢 𝑓𝑌 (𝑢) 𝑑𝑢.

The r-th moment is
𝐸[𝑌 𝑟] = ∫

∞

−∞
𝑢𝑟 𝑓𝑌 (𝑢) 𝑑𝑢.

The uniform distribution on the unit interval [0, 1] has the PDF

𝑓𝑌 (𝑢) = {1 if 𝑢 ∈ [0, 1],
0 otherwise,

and the expected value of a uniformly distributed random variable 𝑌 is

𝐸[𝑌 ] = ∫
∞

−∞
𝑢 𝑓𝑌 (𝑢) 𝑑𝑢 = ∫

1

0
𝑢 𝑑𝑢 = 1

2𝑢2 ∣
1

0
= 1

2.

General Cases

Not every distribution has a PMF or a PDF, but every distribution has a CDF. You can define
expectation also directly via the CDF using the Riemann-Stieltjes integral:

𝐸[𝑌 ] = ∫
∞

−∞
𝑢 𝑑𝐹𝑌 (𝑢).

Similarly, the expected value of a function of multiple random variables can be defined via
their joint CDF:

𝐸[𝑔(𝑍1, … , 𝑍𝑘)] = ∫
ℝ𝑘

𝑔(𝑢1, … , 𝑢𝑘) 𝑑𝐹𝑍1,…,𝑍𝑘
(𝑢1, … , 𝑢𝑘).

For more details, see: probability.svenotto.com/part2_expectation.html#general-case
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Exceptional Cases

Not every distribution has a well-defined expected value. The simple Pareto distribution with
parameter 𝛼 = 1 has the PDF:

𝑓𝑌 (𝑢) = {
1

𝑢2 if 𝑢 > 1,
0 if 𝑢 ≤ 1,

The expected value is:

𝐸[𝑌 ] = ∫
∞

−∞
𝑢𝑓𝑌 (𝑢) d𝑢 = ∫

∞

1

𝑢
𝑢2 d𝑢 = ∫

∞

1

1
𝑢 d𝑢 = log(𝑢)|∞1 = ∞,

where “= ∞” means it diverges.

The game of chance from the St. Petersburg paradox is a discrete example with infinite expec-
tation. In this game, a fair coin is tossed until a tail appears; if the first tail is on the 𝑛-th toss,
the payoff is 2𝑛 dollars. The probability of “first tail on the 𝑛-th toss” is 2−𝑛. The expected
payoff is:

𝐸[𝑌 ] =
∞

∑
𝑛=1

2𝑛 ⋅ 1
2𝑛 =

∞
∑
𝑛=1

1 = ∞

For a 𝑡-distributed random variable 𝑌 with 𝑚 degrees of freedom we have 𝐸[|𝑌 |𝑘] < ∞ for
𝑘 < 𝑚 and 𝐸[|𝑌 |𝑘] = ∞ for 𝑘 ≥ 𝑚. In particular 𝐸[𝑌 ] = 0 for 𝑚 > 1 and 𝐸[𝑌 2] = 𝑚/(𝑚 − 2)
for 𝑚 > 2.
Many statistical procedures require conditions such as 𝐸[𝑌 4] < ∞ (finite fourth moments).
This excludes distributions with very heavy tails and ensures that large outliers (like extreme
payoffs as in the St. Petersburg game) are rare enough.

3.3 Convergence in Probability

The sample mean 𝑌 is a function of the sample 𝑌1, … , 𝑌𝑛 and the expected value 𝐸[𝑌 ] is a
function of the population distribution 𝐹𝑌 .

𝐸[𝑌 ] is a parameter of the population distribution 𝐹𝑌 . In general, a parameter 𝜃 is a char-
acteristic or feature of a population distribution. Parameters are typically fixed but unknown
quantities that we aim to learn about through sampling and estimation.

𝑌 is an estimator for the parameter 𝐸[𝑌 ]. In general, an estimator ̂𝜃𝑛 is a function of sample
data intended to approximate the unknown parameter 𝜃. Since an estimator is a function of
random variables (the sample), it is itself a random variable. When we actually compute the
estimator from a specific realized sample, we call the resulting value an estimate.
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A desired property for any estimator ̂𝜃𝑛 is that it gets closer and closer to the true parameter
𝜃 as the sample size 𝑛 increases. It eventually converges to the true parameter value in a
hypothetically infinitely large sample.

Because ̂𝜃𝑛 is a function of the sample and therefore random, we use convergence in probability
rather than a purely deterministic limit.

Convergence in Probability

A sequence of random variables {𝑊𝑛}∞
𝑛=1 converges in probability to a constant 𝑐 if, for

any 𝜖 > 0,
lim

𝑛→∞
𝑃(|𝑊𝑛 − 𝑐| > 𝜖) = 0

Equivalently, this can be expressed as:

lim
𝑛→∞

𝑃(|𝑊𝑛 − 𝑐| ≤ 𝜖) = 1

This is denoted as 𝑊𝑛
𝑝

→ 𝑐.

Intuitively, convergence in probability means that as the sample size 𝑛 increases, the probability
that 𝑊𝑛 deviates from 𝑐 by more than any fixed positive amount 𝜖 becomes arbitrarily small.

For example, if 𝑊𝑛
𝑝

→ 𝑐, then for any small 𝜖 > 0 (say, 𝜖 = 0.01), we can make 𝑃(|𝑊𝑛 − 𝑐| >
0.01) as small as we want by choosing a sufficiently large sample size 𝑛. This doesn’t mean
that 𝑊𝑛 will exactly equal 𝑐 for large 𝑛, but rather that the probability of 𝑊𝑛 being close to
𝑐 approaches 1 as 𝑛 grows.

Applying the concept of convergence in probability to an estimator ̂𝜃𝑛 for a parameter 𝜃 leads
to the important property of consistency.

Consistency

An estimator ̂𝜃𝑛 is consistent for the parameter 𝜃 if:

̂𝜃𝑛
𝑝

→ 𝜃 as 𝑛 → ∞

That is, if for any 𝜖 > 0:
lim

𝑛→∞
𝑃(| ̂𝜃𝑛 − 𝜃| > 𝜖) = 0

41



Consistency is a minimal requirement for a good estimator. It ensures that with a large enough
sample, the estimator will be arbitrarily close to the true parameter with high probability.

If an estimator ̂𝜃𝑛 is a continuous random variable, it will almost never equal exactly the true
parameter value because for continuous distributions, point probabilities are zero: 𝑃( ̂𝜃𝑛 =
𝜃) = 0.
However, the larger the sample size, the higher the probability that ̂𝜃𝑛 falls within a small
neighborhood around the true value 𝜃. Consistency means that, if we fix some small precision
value 𝜖 > 0, then,

𝑃(| ̂𝜃𝑛 − 𝜃| ≤ 𝜖) = 𝑃(𝜃 − 𝜖 ≤ ̂𝜃𝑛 ≤ 𝜃 + 𝜖)
should increase as the sample size 𝑛 grows, approaching 1 in the limit.

This property aligns with our intuition that more data should lead to better estimates.

3.4 Law of Large Numbers

The Law of Large Numbers (LLN) is one of the fundamental results in probability theory
that establishes the consistency of the sample mean for its population mean.

Law of Large Numbers (LLN)

Let 𝑌1, 𝑌2, … , 𝑌𝑛 be a univariate i.i.d. sample with 𝜇 = 𝐸[𝑌𝑖]. If |𝜇| < ∞, then

𝑌 = 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖
𝑝

→ 𝜇 as 𝑛 → ∞.

The LLN essentially states that if we take a large enough sample from a population with finite
mean, the sample mean will be close to the population mean with high probability.

Below is an interactive Shiny app to visualize the law of large numbers using simulated data
for different sample sizes and different distributions.

SHINY APP: LLN

The LLN is not confined to i.i.d. data, but for other sampling schemes additional conditions
must be satisfied.
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Clustered Data

Clustered data has the form 𝑌𝑔𝑗 for 𝑔 = 1, … , 𝐺 and 𝑗 = 1, … , 𝑛𝑔. Here, 𝐺 is the number of
clusters and 𝑛𝑔 the number of observations in cluster 𝑔.
For instance, 𝐺 may be the number of classrooms, and 𝑛𝑔 the number of students in classroom
𝑔 that take part in a survey (clustered cross section). Or 𝐺 may be the number of firms and
𝑛𝑔 the number of years where the data for firm 𝑔 is observed (panel data)

The LLN holds for clustered data if

• Clusters are independent across 𝑔 = 1, … , 𝐺 (clusters are independently drawn) while
dependence inside a cluster is allowed. That is, 𝑌𝑔𝑗 and 𝑌ℎ𝑘 are independent for 𝑔 ≠ ℎ
but 𝑌𝑔𝑗 and 𝑌𝑔𝑘 may be dependent.

• Cluster observations have a common finite mean: 𝐸[𝑌𝑔𝑗] = 𝜇 < ∞ for all 𝑔 and 𝑗
• No single cluster dominates: max𝑔=1,…,𝐺 𝑛𝑔/𝑁 → 0 with 𝑁 = ∑𝐺

ℎ=1 𝑛ℎ, as 𝑁 → ∞.

Then,
1
𝑁

𝐺
∑
𝑔=1

𝑛𝑔

∑
𝑗=1

𝑌𝑔𝑗
𝑝

→ 𝜇.

Time Series Data

A time series 𝑌𝑡 for 𝑡 = 1, … , 𝑛 is called (strictly) stationary if the vector (𝑌𝑡, 𝑌𝑡+1, … , 𝑌𝑡+ℎ)′

has the same probability distribution as the vector (𝑌𝑡−𝑗, 𝑌𝑡−𝑗+1, … , 𝑌𝑡−𝑗+ℎ)′ for any 𝑡, ℎ, and
𝑗. That is, the distribution is invariant to time shifts.

For time series data, the LLN
1
𝑛

𝑛
∑
𝑡=1

𝑌𝑡
𝑝

→ 𝜇

holds, if

• 𝑌𝑡 is stationary with a finite mean 𝐸[𝑌𝑡] = 𝜇 < ∞;
• Observations 𝑌𝑡 and 𝑌𝑡−𝑗 “become independent as 𝑗 gets large” (strong mixing).

Nominal GDP is typically nonstationary, while year-on-year GDP growth is often (approxi-
mately) stationary:

library(TeachData)
par(mfrow = c(1,2))
plot(gdp, main = "Nominal GDP Germany")
plot(gdpgr, main = "GDP Growth Germany")
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3.5 Central Moments

The 𝑟-th central sample moment is the average of the 𝑟-th powers of the deviations from
the sample mean:

1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )𝑟

For example, the second central moment (𝑟 = 2) is the sample variance:

𝜎̂2
𝑌 = 1

𝑛
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 = 𝑌 2 − 𝑌 2.

The sample variance measures the spread or dispersion of the data around the sample mean.

The population variance of a random variable 𝑌 is defined as

Var(𝑌 ) = 𝐸[(𝑌 − 𝐸[𝑌 ])2] = 𝐸[𝑌 2] − 𝐸[𝑌 ]2.

If 𝑌1, … , 𝑌𝑛 are i.i.d. draws from the distribution of 𝑌 with 𝐸[𝑌 2] < ∞, then

𝜎̂2
𝑌

𝑝
→ Var(𝑌 ).

The sample standard deviation is the square root of the sample variance:

𝜎̂𝑌 = √𝜎̂2
𝑌 = √ 1

𝑛
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 = √𝑌 2 − 𝑌 2.
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It quantifies the typical deviation of data points from the sample mean in the original units of
measurement.

The population standard deviation is

sd(𝑌 ) = √Var(𝑌 ),

and 𝜎̂𝑌
𝑝

→ sd(𝑌 ) under the same conditions as for the sample variance.

3.6 Cross Moments

For a bivariate sample (𝑌1, 𝑍1), … , (𝑌𝑛, 𝑍𝑛), we can compute cross moments that describe the
relationship between the two variables. The sample cross moment is:

𝑌 𝑍 = 1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖𝑍𝑖.

Under i.i.d. sampling from the distribution of the bivariate random variable (𝑌 , 𝑍), it converges
in probability to the population cross moment 𝐸[𝑌 𝑍].
The central sample cross moment is also known as the sample covariance and is defined
as:

𝜎̂𝑌 𝑍 = 1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )(𝑍𝑖 − 𝑍) = 𝑌 𝑍 − 𝑌 𝑍.

It converges under i.i.d. sampling in probability to the population covariance

Cov(𝑌 , 𝑍) = 𝐸[(𝑌 − 𝐸[𝑌 ])(𝑍 − 𝐸[𝑍])] = 𝐸[𝑌 𝑍] − 𝐸[𝑌 ]𝐸[𝑍].

The sample correlation coefficient is the standardized sample covariance:

𝑟𝑌 𝑍 = 𝜎̂𝑌 𝑍
𝜎̂𝑌 𝜎̂𝑍

= ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )(𝑍𝑖 − 𝑍)

√∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2√∑𝑛

𝑖=1(𝑍𝑖 − 𝑍)2
.

Its population counterpart is the population correlation

Corr(𝑌 , 𝑍) = Cov(𝑌 , 𝑍)
sd(𝑌 ) sd(𝑍).
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3.7 Rules of Calculation

For any random variables 𝑋, 𝑌 , 𝑍, and real numbers 𝑎, 𝑏 ∈ ℝ, we have the following rules:

• The expected value is linear:

𝐸[𝑎 + 𝑏𝑌 ] = 𝑎 + 𝑏𝐸[𝑌 ].

• Expectation of the sum of two random variables:

𝐸[𝑌 + 𝑍] = 𝐸[𝑌 ] + 𝐸[𝑍].

• If 𝑌 and 𝑍 are independent, then

𝐸[𝑌 𝑍] = 𝐸[𝑌 ]𝐸[𝑍].

• The variance has a quadratic scaling property:

Var(𝑎 + 𝑏𝑌 ) = 𝑏2Var(𝑌 )

• Variance of the sum of random variables:

Var(𝑌 + 𝑍) = Var(𝑌 ) + 2Cov(𝑌 , 𝑍) + Var(𝑍)

• For the sum of 𝑘 random variables:

Var(
𝑘

∑
𝑖=1

𝑊𝑖) =
𝑘

∑
𝑖=1

𝑘
∑
𝑗=1

Cov(𝑊𝑖, 𝑊𝑗)

• If 𝑌 and 𝑍 are independent, then Cov(𝑌 , 𝑍) = 0. The converse need not hold.
• If 𝑌 and 𝑍 are independent,

Var(𝑌 + 𝑍) = Var(𝑌 ) + Var(𝑍)

• The covariance is bilinear:

Cov(𝑎𝑌 + 𝑏𝑍, 𝑋) = 𝑎Cov(𝑌 , 𝑋) + 𝑏Cov(𝑍, 𝑋)

3.8 Standardized Moments

The r-th standardized sample moment is the central moment normalized by the sample
standard deviation raised to the power of 𝑟. It is defined as:

1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌
𝜎̂𝑌

)
𝑟
,
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provided that 𝜎̂𝑌 > 0.
Its population counterpart is the 𝑟-th standardized population moment

𝐸[(𝑌 − 𝐸[𝑌 ]
sd(𝑌 ) )

𝑟
],

provided that sd(𝑌 ) > 0.

Skewness

The sample skewness is the third standardized sample moment:

𝑠𝑘𝑒𝑤 = 1
𝑛𝜎̂3

𝑌

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )3.

The skewness is a measure of asymmetry around the mean. A positive skewness indicates that
the distribution has a longer or heavier tail on the right side (right-skewed), while a negative
skewness indicates a longer or heavier tail on the left side (left-skewed). A perfectly symmetric
distribution, such as the normal distribution, has a skewness of 0.
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The population skewness is

skew(𝑌 ) = 𝐸[(𝑌 − 𝐸[𝑌 ]
sd(𝑌 ) )

3
] = 𝐸[(𝑌 − 𝐸[𝑌 ])3]

sd(𝑌 )3

Kurtosis

The sample kurtosis is the fourth standardized sample moment:

𝑘𝑢𝑟𝑡 = 1
𝑛𝜎̂4

𝑌

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 )4.
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Kurtosis measures the “tailedness” or heaviness of the tails of a distribution and can indicate
the presence of extreme outliers. The reference value of kurtosis is 3, which corresponds to
the kurtosis of a normal distribution. Values greater than 3 suggest heavier tails, while values
less than 3 indicate lighter tails.

The population kurtosis is

kurt(𝑌 ) = 𝐸[(𝑌 − 𝐸[𝑌 ]
sd(𝑌 ) )

4
] = 𝐸[(𝑌 − 𝐸[𝑌 ])4]

Var(𝑌 )2 .
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The plots display histograms of two standardized datasets (both have a sample mean of 0 and
a sample variance of 1). The left dataset has a normal sample kurtosis (around 3), while the
right dataset has a high sample kurtosis with heavier tails.

Log-transformations

Let’s load the CPS dataset from Section 1:

cps = read.csv("cps.csv")
par(mfrow = c(1,2))
hist(cps$experience, probability = TRUE)
hist(cps$wage, probability = TRUE)

48



Histogram of cps$experience
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Histogram of cps$wage
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To compute the sample skewness and kurtosis we can use the moments package

library(moments)
c(
skewness(cps$experience),
skewness(cps$wage)

)

[1] 0.1872222 4.3201570

Wages are right-skewed because a few very rich individuals earn much more than the many
with low to medium incomes. Experience does not indicate any pronounced skewness.

c(
kurtosis(cps$experience),
kurtosis(cps$wage)

)

[1] 2.373496 30.370331

Wages have a large kurtosis due to a few super-rich individuals in the sample. The kurtosis of
experience is close to 3 and thus similar to a normal distribution.

Right-skewed, heavy-tailed variables are common in real-world datasets, such as income levels,
wealth accumulation, property values, insurance claims, and social media follower counts. A
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common transformation to reduce skewness and kurtosis in data is to use the natural loga-
rithm:

par(mfrow = c(1,2))
hist(cps$wage, probability = TRUE, breaks = 20)
hist(log(cps$wage), probability = TRUE, breaks = 50, xlim = c(-1, 6))
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Histogram of log(cps$wage)
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c(
skewness(log(cps$wage)),
kurtosis(log(cps$wage))
)

[1] -0.6990539 11.8566367

In econometrics, statistics, and many programming languages including R, log(⋅) is commonly
used to denote the natural logarithm (base e).

Note: On a pocket calculator, use LN to calculate the natural logarithm log(⋅) = log𝑒(⋅). If
you use LOG, you will calculate the logarithm with base 10, i.e., log10(⋅), which will give you
a different result. The relationship between these logarithms is log10(𝑥) = log𝑒(𝑥)/ log𝑒(10).

3.9 Multivariate Moments

Consider a multivariate i.i.d. dataset 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 with 𝑋𝑋𝑋𝑖 = (𝑋𝑖1, … , 𝑋𝑖𝑘)′, such as the follow-
ing subset of the cps dataset:
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dat = data.frame(wage = cps$wage, education = cps$education, female = cps$female)

The sample mean vector 𝑋𝑋𝑋 contains the sample means of the 𝑘 variables and is defined
as

𝑋𝑋𝑋 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖 = 1
𝑛

𝑛
∑
𝑖=1

⎛⎜
⎝

𝑋𝑖1
⋮

𝑋𝑖𝑘

⎞⎟
⎠

.

Its population counterpart is the population mean vector

𝐸[𝑋𝑋𝑋𝑖] = 𝐸[(𝑋𝑖1, … , 𝑋𝑖𝑘)′]

Cross Moment Matrix

The sample cross-moment matrix is

1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖 = 1

𝑛
𝑛

∑
𝑖=1

⎛⎜⎜⎜⎜
⎝

𝑋2
𝑖1 𝑋𝑖1𝑋𝑖2 … 𝑋𝑖1𝑋𝑖𝑘

𝑋𝑖1𝑋𝑖2 𝑋2
𝑖2 … 𝑋𝑖2𝑋𝑖𝑘

⋮ ⋮ ⋱ ⋮
𝑋𝑖1𝑋𝑖𝑘 𝑋𝑖2𝑋𝑖𝑘 … 𝑋2

𝑖𝑘

⎞⎟⎟⎟⎟
⎠

Its population counterpart is 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖].

Sample covariance matrix

The sample covariance matrix Σ̂ is the 𝑘 × 𝑘 matrix given by

Σ̂ = 1
𝑛

𝑛
∑
𝑖=1

(𝑋𝑋𝑋𝑖 − 𝑋𝑋𝑋)(𝑋𝑋𝑋𝑖 − 𝑋𝑋𝑋)′.

Its elements 𝜎̂ℎ,𝑙 represent the pairwise sample covariance between variables ℎ and 𝑙:

𝜎̂ℎ,𝑙 = 1
𝑛

𝑛
∑
𝑖=1

(𝑋𝑖ℎ − 𝑋ℎ)(𝑋𝑖𝑙 − 𝑋𝑙), 𝑋ℎ = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖ℎ.

The population counterpart is the population covariance matrix:

Var(𝑋𝑋𝑋𝑖) = 𝐸[(𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖])(𝑋𝑋𝑋𝑖 − 𝐸[𝑋𝑋𝑋𝑖])′]
= 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖] − 𝐸[𝑋𝑋𝑋𝑖]𝐸[𝑋𝑋𝑋𝑖]′.
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Sample correlation matrix

The sample correlation coefficient between the variables ℎ and 𝑙 is the standardized sample
covariance:

𝑟ℎ,𝑙 = 𝜎̂ℎ,𝑙
𝜎̂ℎ𝜎̂𝑙

= ∑𝑛
𝑖=1(𝑋𝑖ℎ − 𝑋ℎ)(𝑋𝑖𝑙 − 𝑋𝑙)

√∑𝑛
𝑖=1(𝑋𝑖ℎ − 𝑋ℎ)2√∑𝑛

𝑖=1(𝑋𝑖𝑙 − 𝑋𝑙)2
.

These coefficients form the sample correlation matrix 𝑅, expressed as:

𝑅 = 𝐷−1Σ̂𝐷−1,
where 𝐷 is the diagonal matrix of sample standard deviations:

𝐷 = diag(𝜎̂1, … , 𝜎̂𝑘) =
⎛⎜⎜⎜⎜
⎝

𝜎̂1 0 … 0
0 𝜎̂2 … 0
⋮ ⋱ ⋮
0 0 … 𝜎̂𝑘

⎞⎟⎟⎟⎟
⎠

The covariance and correlation matrices are symmetric and positive semidefinite.

cor(dat)

wage education female
wage 1.0000000 0.38398973 -0.16240519
education 0.3839897 1.00000000 0.04448972
female -0.1624052 0.04448972 1.00000000

We find a strong positive correlation between wage and education, a substantial negative
correlation between wage and female, and a negligible correlation between education and
female.

3.10 R Code

statistics-sec03.R
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4 Least squares

4.1 Regression Fundamentals

Regression Problem

The idea of regression analysis is to approximate a univariate dependent variable 𝑌𝑖 (also
known as the regressand or response variable) as a function of the 𝑘-variate vector of the
independent variables 𝑋𝑋𝑋𝑖 (also known as regressors or predictor variables). The relationship
is formulated as

𝑌𝑖 ≈ 𝑓(𝑋𝑋𝑋𝑖), 𝑖 = 1, … , 𝑛,
where 𝑌1, … , 𝑌𝑛 is a univariate dataset for the dependent variable and 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛 a 𝑘-variate
dataset for the regressor variables.

The goal of the least squares method is to find the regression function that minimizes the
squared difference between actual and fitted values of 𝑌𝑖:

min
𝑓(⋅)

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑓(𝑋𝑋𝑋𝑖))2.

Linear Regression

If the regression function 𝑓(𝑋𝑋𝑋𝑖) is linear in 𝑋𝑋𝑋𝑖, i.e.,

𝑓(𝑋𝑋𝑋𝑖) = 𝑏1 + 𝑏2𝑋𝑖2 + … + 𝑏𝑘𝑋𝑖𝑘 = 𝑋𝑋𝑋′
𝑖𝑏𝑏𝑏, 𝑏𝑏𝑏 ∈ ℝ𝑘,

the minimization problem is known as the ordinary least squares (OLS) problem. The
coefficient vector has 𝑘 entries:

𝑏𝑏𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑘)′.
To avoid the unrealistic constraint of the regression line passing through the origin, a constant
term (intercept) is always included in 𝑋𝑋𝑋𝑖, typically as the first regressor:

𝑋𝑋𝑋𝑖 = (1, 𝑋𝑖2, … , 𝑋𝑖𝑘)′.

Despite its linear framework, linear regressions can be quite adaptable to nonlinear relation-
ships by incorporating nonlinear transformations of the original regressors. Examples include
polynomial terms (e.g., squared, cubic), interaction terms (combining different variables), and
logarithmic transformations.
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4.2 Ordinary least squares (OLS)

The sum of squared errors for a given coefficient vector 𝑏𝑏𝑏 ∈ ℝ𝑘 is defined as

𝑆𝑛(𝑏𝑏𝑏) =
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑓(𝑋𝑋𝑋𝑖))2 =
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝑏𝑏𝑏)2.

It is minimized by the least squares coefficient vector

̂𝛽𝛽𝛽 = argmin𝑏𝑏𝑏∈ℝ𝑘

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝑏𝑏𝑏)2.

Least squares coefficients

If the 𝑘 × 𝑘 matrix (∑𝑛
𝑖=1 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖) is invertible, the solution for the ordinary least squares
problem is uniquely determined by

̂𝛽𝛽𝛽 = (
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1 𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖.

The fitted values or predicted values are

𝑌𝑖 = ̂𝛽1 + ̂𝛽2𝑋𝑖2 + … + ̂𝛽𝑘𝑋𝑖𝑘 = 𝑋𝑋𝑋′
𝑖 ̂𝛽𝛽𝛽, 𝑖 = 1, … , 𝑛.

The residuals are the difference between observed and fitted values:

𝑢̂𝑖 = 𝑌𝑖 − 𝑌𝑖 = 𝑌𝑖 − 𝑋𝑋𝑋′
𝑖 ̂𝛽𝛽𝛽, 𝑖 = 1, … , 𝑛.

4.3 Simple linear regression (k=2)

A simple linear regression is a linear regression of a dependent variable 𝑌 on a constant and
a single independent variable 𝑍. I.e., we are interested in a regression function of the form

𝑋𝑋𝑋′
𝑖𝑏𝑏𝑏 = 𝑏1 + 𝑏2𝑍𝑖.

The regressor vector is 𝑋𝑋𝑋𝑖 = (1, 𝑍𝑖)′. Let’s consider 𝑌 = log(wage) and 𝑍 = education from
the following dataset with 𝑛 = 20 observations:
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Person log(Wage) Edu Edu^2 Edu x log(Wage)
1 2.56 18 324 46.08
2 2.44 14 196 34.16
3 2.32 14 196 32.48
4 2.44 16 256 39.04
5 2.22 16 256 35.52
6 2.7 14 196 37.8
7 2.46 16 256 39.36
8 2.71 16 256 43.36
9 3.18 18 324 57.24
10 2.15 12 144 25.8
11 3.24 18 324 58.32
12 2.76 14 196 38.64
13 1.64 12 144 19.68
14 3.36 21 441 70.56
15 1.86 14 196 26.04
16 2.56 12 144 30.72
17 2.22 13 169 28.86
18 2.61 21 441 54.81
19 2.54 12 144 30.48
20 2.9 21 441 60.9

sum 50.87 312 5044 809.85

The OLS coefficients are

(
̂𝛽1
̂𝛽2
) = (

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1 𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖

= ( 𝑛 ∑𝑛
𝑖=1 𝑍𝑖

∑𝑛
𝑖=1 𝑍𝑖 ∑𝑛

𝑖=1 𝑍2
𝑖
)

−1
( ∑𝑛

𝑖=1 𝑌𝑖
∑𝑛

𝑖=1 𝑍𝑖𝑌𝑖
)

Evaluate sums:
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖 = ( 50.87
809.85) ,

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖 = ( 20 312

312 5044)

OLS coefficients:

̂𝛽𝛽𝛽 = (
̂𝛽1
̂𝛽2
) = ( 20 312

312 5044)
−1

( 50.87
809.85) = (1.107

0.092)
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The fitted regression line is
1.107 + 0.092 education

There is another, simpler formula for ̂𝛽1 and ̂𝛽2 in the simple linear regression. It can be
expressed in terms of sample means and covariances:

Simple linear regression

The least squares coefficients in a simple linear regression can be written as

̂𝛽2 = 𝜎̂𝑌 𝑍
𝜎̂2

𝑍
, ̂𝛽1 = 𝑌 − ̂𝛽2𝑍, (4.1)

where 𝜎̂𝑌 𝑍 is the sample covariance between 𝑌 and 𝑍, and 𝜎̂2
𝑍 is the sample variance of 𝑍.

4.4 Regression Plots

Line Fitting

Let’s examine the linear relationship between average test scores and the student-teacher
ratio:

data(CASchools, package = "AER")
CASchools$STR = CASchools$students/CASchools$teachers
CASchools$score = (CASchools$read+CASchools$math)/2
fit1 = lm(score ~ STR, data = CASchools)
fit1$coefficients

(Intercept) STR
698.932949 -2.279808

We have
̂𝛽𝛽𝛽 = (698.9

−2.28) .

The fitted regression line is
698.9 − 2.28 STR.

We can plot the regression line over a scatter plot of the data:
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par(mfrow = c(1,2), cex=0.8)
plot(score ~ STR, data = CASchools)
abline(fit1, col="blue")
plot(CASchools$STR, fit1$residuals)
abline(0, 0, col="blue")
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Multidimensional Visualizations

Let’s include the percentage of english learners as an additional regressor:

fit2= lm(score ~ STR + english, data = CASchools)
fit2$coefficients

(Intercept) STR english
686.0322445 -1.1012956 -0.6497768

A 3D plot provides a visual representation of the resulting regression line (surface):
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OLS Regression Surface
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Adding the additional predictor income gives a regression specification with dimensions beyond
visual representation:

fit3 = lm(score ~ STR + english + income, data = CASchools)
fit3$coefficients

(Intercept) STR english income
640.31549821 -0.06877542 -0.48826683 1.49451661

The fitted regression line now includes three predictors and four coefficients:

640.3 − 0.07 STR − 0.49 english + 1.49 income

4.5 Matrix notation

OLS Formula

Matrix notation is convenient because it eliminates the need for summation symbols and
indices. We define the response vector 𝑌𝑌𝑌 and the regressor matrix (design matrix) 𝑋𝑋𝑋 as
follows:

𝑌𝑌𝑌 =
⎛⎜⎜⎜⎜
⎝

𝑌1
𝑌2
⋮

𝑌𝑛

⎞⎟⎟⎟⎟
⎠

, 𝑋𝑋𝑋 =
⎛⎜⎜⎜⎜
⎝

𝑋𝑋𝑋′
1

𝑋𝑋𝑋′
2

⋮
𝑋𝑋𝑋′

𝑛

⎞⎟⎟⎟⎟
⎠

= ⎛⎜
⎝

1 𝑋12 … 𝑋1𝑘
⋮ ⋮
1 𝑋𝑛2 … 𝑋𝑛𝑘

⎞⎟
⎠

Note that ∑𝑛
𝑖=1 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖 = 𝑋𝑋𝑋′𝑋𝑋𝑋 and ∑𝑛
𝑖=1 𝑋𝑋𝑋𝑖𝑌𝑖 = 𝑋𝑋𝑋′𝑌𝑌𝑌 .
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The least squares coefficient vector becomes

̂𝛽𝛽𝛽 = (
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1 𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌 .

The vector of fitted values can be computed as follows:

𝑌𝑌𝑌 = ⎛⎜⎜
⎝

𝑌1
⋮

𝑌𝑛

⎞⎟⎟
⎠

= 𝑋𝑋𝑋 ̂𝛽𝛽𝛽 = 𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌 .

Projection Matrix

The vector of fitted values can be computed as follows:

𝑌𝑌𝑌 = ⎛⎜⎜
⎝

𝑌1
⋮

𝑌𝑛

⎞⎟⎟
⎠

= 𝑋𝑋𝑋 ̂𝛽𝛽𝛽 = 𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′⏟⏟⏟⏟⏟⏟⏟
=𝑃𝑃𝑃

𝑌𝑌𝑌 = 𝑃𝑃𝑃𝑌𝑌𝑌 .

The projection matrix 𝑃𝑃𝑃 is also known as the influence matrix or hat matrix and maps
observed values to fitted values.

The diagonal entries of 𝑃𝑃𝑃 , given by

ℎ𝑖𝑖 = 𝑋𝑋𝑋′
𝑖(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋𝑖,

are called leverage values or hat values and measure how far away the regressor values of
the 𝑖-th observation 𝑋𝑖 are from those of the other observations.

Properties of leverage values:

0 ≤ ℎ𝑖𝑖 ≤ 1,
𝑛

∑
𝑖=1

ℎ𝑖𝑖 = 𝑘.

A large ℎ𝑖𝑖 occurs when the observation 𝑖 has a big influence on the regression line, e.g., the
last observation in the following dataset:

X=c(10,20,30,40,50,60,70,500)
Y=c(1000,2200,2300,4200,4900,5500,7500,10000)
plot(X,Y, main="OLS regression line with and without last observation")
abline(lm(Y~X), col="blue")
abline(lm(Y[1:7]~X[1:7]), col="red")
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hatvalues(lm(Y~X))

1 2 3 4 5 6 7 8
0.1657356 0.1569566 0.1492418 0.1425911 0.1370045 0.1324820 0.1290237 0.9869646

Residuals

The vector of residuals is given by

̂𝑢𝑢𝑢 = ⎛⎜
⎝

𝑢̂1
⋮

𝑢̂𝑛

⎞⎟
⎠

= 𝑌𝑌𝑌 − 𝑌𝑌𝑌 = 𝑌𝑌𝑌 − 𝑋𝑋𝑋 ̂𝛽𝛽𝛽.

An important property of the residual vector is: 𝑋𝑋𝑋′ ̂𝑢𝑢𝑢 = 000. To see that this property holds,
let’s rearrange the OLS formula:

̂𝛽𝛽𝛽 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌 ⇔ 𝑋𝑋𝑋′𝑋𝑋𝑋 ̂𝛽𝛽𝛽 = 𝑋𝑋𝑋′𝑌𝑌𝑌 .
The dependent variable vector can be decomposed into the vector of fitted values and the
residual vector:

𝑌𝑌𝑌 = 𝑋𝑋𝑋 ̂𝛽𝛽𝛽 + ̂𝑢𝑢𝑢.
Substituting this into the OLS formula from above gives:

𝑋𝑋𝑋′𝑋𝑋𝑋 ̂𝛽𝛽𝛽 = 𝑋𝑋𝑋′(𝑋𝑋𝑋 ̂𝛽𝛽𝛽 + ̂𝑢𝑢𝑢) ⇔ 000 = 𝑋𝑋𝑋′ ̂𝑢𝑢𝑢.

This property has a geometric interpretation: it means the residuals are orthogonal to all
regressors. This makes sense because if there were any linear relationship left between the
residuals and the regressors, we could have captured it in our model to improve the fit.
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4.6 Goodness of Fit

Analysis of Variance

The orthogonality property of the residual vector can be written in a more detailed way as
follows:

𝑋𝑋𝑋′ ̂𝑢𝑢𝑢 =
⎛⎜⎜⎜⎜
⎝

∑𝑛
𝑖=1 𝑢̂𝑖

∑𝑛
𝑖=1 𝑋𝑖2𝑢̂𝑖

⋮
∑𝑛

𝑖=1 𝑋𝑖𝑘𝑢̂𝑖

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

0
0
⋮
0

⎞⎟⎟⎟⎟
⎠

. (4.2)

In particular, the sample mean of the residuals is zero:

1
𝑛

𝑛
∑
𝑖=1

𝑢̂𝑖 = 0.

Therefore, the sample variance of the residuals is simply the sample mean of squared residu-
als:

𝜎̂2
𝑢̂ = 1

𝑛
𝑛

∑
𝑖=1

𝑢̂2
𝑖 .

The sample variance of the dependent variable is

𝜎̂2
𝑌 = 1

𝑛
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2,

and the sample variance of the fitted values is

𝜎̂2
𝑌 = 1

𝑛
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2.

The three sample variances are connected through the analysis of variance formula:

𝜎̂2
𝑌 = 𝜎̂2

𝑌 + 𝜎̂2
𝑢̂.

Hence, the larger the proportion of the explained sample variance, the better the fit of the
OLS regression.

R-squared

The analysis of variance formula motivates the definition of the R-squared coefficient:

𝑅2 = 1 − 𝜎̂2
𝑢̂

𝜎̂2
𝑌

= 1 − ∑𝑛
𝑖=1 𝑢̂2

𝑖
∑𝑛

𝑖=1(𝑌𝑖 − 𝑌 )2 = ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2

∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2 .
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The R-squared describes the proportion of sample variation in 𝑌𝑌𝑌 explained by 𝑌𝑌𝑌 . We have
0 ≤ 𝑅2 ≤ 1.
In a regression of 𝑌𝑖 on a single regressor 𝑍𝑖 with intercept (simple linear regression), the
R-squared is equal to the squared sample correlation coefficient of 𝑌𝑖 and 𝑍𝑖.

An R-squared of 0 indicates no sample variation in 𝑌𝑌𝑌 (a flat regression line/surface), whereas
a value of 1 indicates no variation in ̂𝑢𝑢𝑢, indicating a perfect fit. The higher the R-squared, the
better the OLS regression fits the data.

However, a low R-squared does not necessarily mean the regression specification is bad. It
just implies that there is a high share of unobserved heterogeneity in 𝑌𝑌𝑌 that is not captured
by the regressors 𝑋𝑋𝑋 linearly.

Conversely, a high R-squared does not necessarily mean a good regression specification. It
just means that the regression fits the sample well. Too many unnecessary regressors lead to
overfitting.

If 𝑘 = 𝑛, we have 𝑅2 = 1 even if none of the regressors has an actual influence on the dependent
variable.

Degree of Freedom Corrections

Adjusted Sample Variance

When computing the sample mean 𝑌 , we have 𝑛 degrees of freedom because all data points
𝑌1, … , 𝑌𝑛 can vary freely.

When computing variances, we take the sample mean of the squared deviations

(𝑌1 − 𝑌 )2, … , (𝑌𝑛 − 𝑌 )2.

These elements cannot vary freely because 𝑌 is computed from the same sample and implies
the constraint

1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝑌 ) = 0.

This means that the deviations are connected by this equation and are not all free to vary.
Knowing the first 𝑛 − 1 of the deviations determines the last one:

(𝑌𝑛 − 𝑌 ) = −
𝑛−1
∑
𝑖=1

(𝑌𝑖 − 𝑌 ).

Therefore, only 𝑛 − 1 deviations can vary freely, which results in 𝑛 − 1 degrees of freedom for
the sample variance.
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Because ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2 effectively contains only 𝑛 − 1 freely varying summands, it is common

to account for this fact. The adjusted sample variance uses 𝑛 − 1 in the denominator:

𝑠2
𝑌 = 1

𝑛 − 1
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2.

The adjusted sample variance relates to the unadjusted sample variance as:

𝑠2
𝑌 = 𝑛

𝑛 − 1𝜎̂2
𝑌 .

Its square root, 𝑠𝑌 = √ 1
𝑛−1 ∑𝑛

𝑖=1(𝑌𝑖 − 𝑌 )2, is the adjusted sample standard deviation. Note:
the built-in R functions var(Y) and sd(Y) compute the adjusted versions of the sample variance
and standard deviations.

Adjusted Residual Variance

For the sample variance of ̂𝑢𝑢𝑢, we lose 𝑘 degrees of freedom because the residuals are subject to
the constraints from Equation 4.2. The adjusted sample variance of the residuals is therefore
defined as:

𝑠2
𝑢̂ = 1

𝑛 − 𝑘
𝑛

∑
𝑖=1

𝑢̂2
𝑖 .

The square root of the adjusted sample variance of the residuals is called the standard error
of the regression (SER) or residual standard error:

𝑆𝐸𝑅 ∶= 𝑠𝑢̂ = √ 1
𝑛 − 𝑘

𝑛
∑
𝑖=1

𝑢̂2
𝑖 .

The square root of the unadjusted sample variance of the residuals is also called the Root
Mean Squared Error (RMSE):

𝑅𝑀𝑆𝐸( ̂𝛽𝛽𝛽) = 𝜎̂𝑢̂ = √ 1
𝑛

𝑛
∑
𝑖=1

𝑢̂2
𝑖 .

Adjusted R-squared

By incorporating adjusted versions of the sample variances in the R-squared definition, we
penalize regression specifications with large 𝑘. The adjusted R-squared is

𝑅2 = 1 −
1

𝑛−𝑘 ∑𝑛
𝑖=1 𝑢̂2

𝑖
1

𝑛−1 ∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2 = 1 − 𝑠2

𝑢̂
𝑠2

𝑌
.
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(1) (2) (3)
(Intercept) 698.933 686.032 640.315
STR −2.280 −1.101 −0.069
english −0.650 −0.488
income 1.495
Num.Obs. 420 420 420
R2 0.051 0.426 0.707
R2 Adj. 0.049 0.424 0.705
RMSE 18.54 14.41 10.30

The R-squared should be used for interpreting the share of variation explained by the fitted
regression line. The adjusted R-squared should be used for comparing different OLS regression
specifications.

4.7 Regression Table

The modelsummary() function can be used to produce comparison tables of regression out-
puts:

library(modelsummary)
mymodels = list(fit1, fit2, fit3)
modelsummary(mymodels,

statistic = NULL,
gof_map = c("nobs", "r.squared", "adj.r.squared", "rmse"))

Model (3) explains the most variation in test scores and provides the best fit to the data, as
indicated by the highest 𝑅2 and the lowest residual standard error.

In model (1), schools with one more student per class are predicted to have a 2.28-point lower
test score. This effect decreases to 1.1 points in model (2), after accounting for the percentage
of English learners, and drops further to just 0.07 points in model (3), once income is also
included.

While the R-squared increases in the number of regressors, the RMSE decreases.

To give deeper meaning to these results and understand their interpretation within a broader
context, we turn to a formal probabilistic model framework in the next section.
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4.8 When OLS Fails

Too many regressors

OLS should be considered for regression problems with 𝑘 << 𝑛 (small 𝑘 and large 𝑛). When
the number of predictors 𝑘 approaches or equals the number of observations 𝑛, we run into the
problem of overfitting. Specifically, at 𝑘 = 𝑛, the regression line will perfectly fit the data.
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If 𝑘 = 𝑛 ≥ 4, we can no longer visualize the OLS regression line in the 3D space, but the
problem of a perfect fit is still present. If 𝑘 > 𝑛, there exists no unique OLS solution because
𝑋𝑋𝑋′𝑋𝑋𝑋 is not invertible. Regression problems with 𝑘 ≈ 𝑛 or 𝑘 > 𝑛 are called high-dimensional
regressions.

Perfect multicollinearity

The only requirement for computing the OLS coefficients is the invertibility of the matrix 𝑋𝑋𝑋′𝑋𝑋𝑋.
As discussed above, a necessary condition is that 𝑘 ≤ 𝑛.
Another reason the matrix may not be invertible is if two or more regressors are perfectly
collinear. Two variables are perfectly collinear if their sample correlation is 1 or -1. Multi-
collinearity arises if one variable is a linear combination of the other variables.

Common causes are duplicating a regressor or using the same variable in different units (e.g.,
GDP in both EUR and USD).
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Perfect multicollinearity (or strict multicollinearity) arises if the regressor matrix does not
have full column rank: rank(𝑋𝑋𝑋) < 𝑘. It implies rank(𝑋𝑋𝑋′𝑋𝑋𝑋) < 𝑘, so that the matrix is singular
and ̂𝛽𝛽𝛽 cannot be computed.

Near multicollinearity occurs when two columns of 𝑋𝑋𝑋 have a sample correlation very close
to 1 or -1. Then, (𝑋𝑋𝑋′𝑋𝑋𝑋) is “near singular”, its eigenvalues are very small, and (𝑋𝑋𝑋′𝑋𝑋𝑋)−1

becomes very large, causing numerical problems.

If 𝑘 ≤ 𝑛 and multicollinearity is present, it means that at least one regressor is redundant and
can be dropped.

Dummy variable trap

A common cause of strict multicollinearity is the inclusion of too many dummy variables. Let’s
consider the cps data and add a dummy variable for non-married individuals:

cps = read.csv("cps.csv")
cps$nonmarried = 1-cps$married
fit4 = lm(wage ~ married + nonmarried, data = cps)
fit4$coefficients

(Intercept) married nonmarried
19.305329 6.920139 NA

The coefficient for nonmarried is NA. We fell into the dummy variable trap!

The dummy variables married and nonmarried are collinear with the intercept variable be-
cause 𝑚𝑎𝑟𝑟𝑖𝑒𝑑 + 𝑛𝑜𝑛𝑚𝑎𝑟𝑟𝑖𝑒𝑑 = 1, which leads to a singular matrix 𝑋𝑋𝑋′𝑋𝑋𝑋 and therefore to
perfect multicollinearity.

The solution is to use one dummy variable less than factor levels, as R automatically does by
omitting the last dummy variable. Another solution would be to remove the intercept from
the model, which can be done by adding -1 to the model formula:

fit5 = lm(wage ~ married + nonmarried - 1, data = cps)
fit5$coefficients

married nonmarried
26.22547 19.30533

4.9 R Code

statistics-sec04.R
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5 Regression

5.1 Conditional Expectation

In econometrics, we often analyze how a variable of interest (like wages) varies systematically
with other variables (like education or experience). The conditional expectation function
(CEF) provides a powerful framework for describing these relationships.

The conditional expectation of a random variable 𝑌 given a random vector 𝑋𝑋𝑋 is the expected
value of 𝑌 given any possible value of 𝑋𝑋𝑋. Using the conditional CDF, the conditional expec-
tation (or conditional mean) is

𝐸[𝑌 |𝑋𝑋𝑋 = 𝑥𝑥𝑥] = ∫
∞

−∞
𝑦 𝑑𝐹𝑌 |𝑋𝑋𝑋=𝑥𝑥𝑥(𝑦).

For a continuous random variable 𝑌 we have

𝐸[𝑌 |𝑋𝑋𝑋 = 𝑥𝑥𝑥] = ∫
∞

−∞
𝑦 𝑓𝑌 |𝑋𝑋𝑋=𝑥𝑥𝑥(𝑦) 𝑑𝑦,

where 𝑓𝑌 |𝑋𝑋𝑋=𝑥𝑥𝑥(𝑦) is the conditional density of 𝑌 given 𝑋𝑋𝑋 = 𝑥𝑥𝑥.
When 𝑌 is discrete with support 𝒴, we have

𝐸[𝑌 |𝑋𝑋𝑋 = 𝑥𝑥𝑥] = ∑
𝑦∈𝒴

𝑦 𝜋𝑌 |𝑋𝑋𝑋=𝑥𝑥𝑥(𝑦).

The CEF maps values of 𝑋𝑋𝑋 to corresponding conditional means of 𝑌 . As a function of the
random vector 𝑋𝑋𝑋, the CEF itself is a random variable:

𝐸[𝑌 |𝑋𝑋𝑋] = 𝑚(𝑋𝑋𝑋), where 𝑚(𝑥𝑥𝑥) = 𝐸[𝑌 |𝑋𝑋𝑋 = 𝑥𝑥𝑥]

For a comprehensive treatment of conditional expectations see Probability Tutorial
Part 2

67

https://probability.svenotto.com/part2_expectation.html
https://probability.svenotto.com/part2_expectation.html


(a) Unconditional density of wage (b) Conditional density of wage given different years
of education

Figure 5.1: Unconditional density 𝑓𝑌 (𝑦) and conditional densities 𝑓𝑌 |𝑋=𝑥(𝑦) of wage given 𝑥
years of education

Examples

Let’s examine this concept using wage and education as examples. When 𝑋 is univariate and
discrete (such as years of education), we can analyze how wage distributions change across
education levels by comparing their conditional distributions:

Notice how the conditional distributions tend to shift rightward as education increases, indi-
cating higher average wages with higher education.

From these conditional densities, we can compute the expected wage for each education level.
Plotting these conditional expectations gives the CEF:

𝑚(𝑥) = 𝐸[wage ∣ edu = 𝑥]

Since education is discrete, the CEF is defined only at specific values, as shown in the left plot
below:

When 𝑋 is continuous (like years of experience), the CEF is often a smooth function (right
plot). The shape of 𝐸[wage|experience] reflects real-world patterns: wages rise quickly early
in careers, then plateau, and may eventually decline near retirement.

The CEF as a Random Variable

It’s important to distinguish between:

• 𝐸[𝑌 |𝑋𝑋𝑋 = 𝑥𝑥𝑥]: a number (the conditional mean at a specific value)
• 𝐸[𝑌 |𝑋𝑋𝑋]: a function of 𝑋𝑋𝑋, which is itself a random variable
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(a) CEF of wage given education (b) CEF of wage given experience

Figure 5.2: Conditional expectations of wage given education (left) and experience (right)

For instance, if 𝑋 = education has the probability mass function:

𝑃(𝑋 = 𝑥) =

⎧{{{{{
⎨{{{{{⎩

0.06 if 𝑥 = 10
0.43 if 𝑥 = 12
0.16 if 𝑥 = 14
0.08 if 𝑥 = 16
0.24 if 𝑥 = 18
0.03 if 𝑥 = 21
0 otherwise

Then 𝐸[𝑌 |𝑋] as a random variable has the probability mass function:

𝑃(𝐸[𝑌 |𝑋] = 𝑦) =

⎧{{{{{
⎨{{{{{⎩

0.06 if 𝑦 = 11.68 (when 𝑋 = 10)
0.43 if 𝑦 = 14.26 (when 𝑋 = 12)
0.16 if 𝑦 = 17.80 (when 𝑋 = 14)
0.08 if 𝑦 = 16.84 (when 𝑋 = 16)
0.24 if 𝑦 = 21.12 (when 𝑋 = 18)
0.03 if 𝑦 = 27.05 (when 𝑋 = 21)
0 otherwise,

where the values for 𝑦 are taken from Figure 5.2a.

The CEF assigns to each value of 𝑋𝑋𝑋 the expected value of 𝑌 given that information.
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5.2 CEF Properties

The conditional expectation function has several important properties that make it a funda-
mental tool in econometric analysis.

Law of Iterated Expectations (LIE)

The law of iterated expectations connects conditional and unconditional expectations:

𝐸[𝑌 ] = 𝐸[𝐸[𝑌 |𝑋𝑋𝑋]]

This means that to compute the overall average of 𝑌 , we can first compute the average of 𝑌
within each group defined by 𝑋𝑋𝑋, then average those conditional means using the distribution
of 𝑋𝑋𝑋.

This is analogous to the law of total probability, where we compute marginal probabilities or
densities as weighted averages of conditional ones:

For simplicity consider a univariate conditioning random variable 𝑋. When 𝑋 is discrete:

𝑃(𝑌 = 𝑦) = ∑
𝑥

𝑃(𝑌 = 𝑦 ∣ 𝑋 = 𝑥) ⋅ 𝑃 (𝑋 = 𝑥)

When 𝑋 is continuous:
𝑓𝑌 (𝑦) = ∫

∞

−∞
𝑓𝑌 |𝑋=𝑥(𝑦) ⋅ 𝑓𝑋(𝑥) 𝑑𝑥

Similarly, the LIE states:

When 𝑋 is discrete:
𝐸[𝑌 ] = ∑

𝑥
𝐸[𝑌 ∣ 𝑋 = 𝑥] ⋅ 𝑃 (𝑋 = 𝑥)

When 𝑋 is continuous:
𝐸[𝑌 ] = ∫

∞

−∞
𝐸[𝑌 ∣ 𝑋 = 𝑥] ⋅ 𝑓𝑋(𝑥) 𝑑𝑥

Let’s apply this to our wage and education example. With 𝑋 = education and 𝑌 = wage, we
have:

70



𝐸[𝑌 |𝑋 = 10] = 11.68, 𝑃 (𝑋 = 10) = 0.06
𝐸[𝑌 |𝑋 = 12] = 14.26, 𝑃 (𝑋 = 12) = 0.43
𝐸[𝑌 |𝑋 = 14] = 17.80, 𝑃 (𝑋 = 14) = 0.16
𝐸[𝑌 |𝑋 = 16] = 16.84, 𝑃 (𝑋 = 16) = 0.08
𝐸[𝑌 |𝑋 = 18] = 21.12, 𝑃 (𝑋 = 18) = 0.24
𝐸[𝑌 |𝑋 = 21] = 27.05, 𝑃 (𝑋 = 21) = 0.03

The law of iterated expectations gives us:

𝐸[𝑌 ] = ∑
𝑥

𝐸[𝑌 |𝑋 = 𝑥] ⋅ 𝑃 (𝑋 = 𝑥)

= 11.68 ⋅ 0.06 + 14.26 ⋅ 0.43 + 17.80 ⋅ 0.16
+ 16.84 ⋅ 0.08 + 21.12 ⋅ 0.24 + 27.05 ⋅ 0.03

= 0.7008 + 6.1318 + 2.848 + 1.3472 + 5.0688 + 0.8115
= 16.91

This unconditional expected wage of 16.91 aligns with what we would calculate from the
unconditional density from Figure 5.1a.

The LIE provides us with a powerful way to bridge conditional expectations (within education
groups) and the overall unconditional expectation (averaging across all education levels).

Conditioning Theorem (CT)

The conditioning theorem (also called the factorization rule) states:

𝐸[𝑔(𝑋𝑋𝑋)𝑌 |𝑋𝑋𝑋] = 𝑔(𝑋𝑋𝑋) ⋅ 𝐸[𝑌 |𝑋𝑋𝑋]

This means that when taking the conditional expectation of a product where one factor is a
function of the conditioning variable, that factor can be treated as a constant and factored
out. Once we condition on 𝑋𝑋𝑋, the value of 𝑔(𝑋𝑋𝑋) is fixed.

If 𝑌 = wage and 𝑋 = education, then for someone with 16 years of education:

𝐸[16 ⋅ wage ∣ edu = 16] = 16 ⋅ 𝐸[wage ∣ edu = 16]

More generally, if we want to find the expected product of education and wage, conditional on
education:

𝐸[edu ⋅ wage ∣ edu] = edu ⋅ 𝐸[wage ∣ edu]
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Best Predictor Property

If 𝐸[𝑌 2] < ∞, the conditional expectation 𝐸[𝑌 |𝑋𝑋𝑋] is the best predictor of 𝑌 given 𝑋𝑋𝑋 in
terms of mean squared error, i.e.:

𝐸[𝑌 |𝑋𝑋𝑋] = argmin
𝑔(⋅)

𝐸[(𝑌 − 𝑔(𝑋𝑋𝑋))2]

This means that among all possible functions of 𝑋𝑋𝑋, the CEF minimizes the expected squared
prediction error. In practical terms, if you want to predict wages based only on education, the
optimal prediction is exactly the conditional mean wage for each education level.

For example, if someone has 18 years of education, our best prediction of their wage (minimiz-
ing expected squared error) is 𝐸[wage|education = 18] = 21.12.
No other function of education, whether linear, quadratic, or more complex, can yield a better
prediction in terms of expected squared error than the CEF itself.

Proof sketch: Add and subtract 𝑚(𝑋𝑋𝑋) = 𝐸[𝑌 |𝑋𝑋𝑋]:
𝐸[(𝑌 − 𝑔(𝑋𝑋𝑋))2]
= 𝐸[(𝑌 − 𝑚(𝑋𝑋𝑋) + 𝑚(𝑋𝑋𝑋) − 𝑔(𝑋𝑋𝑋))2]
= 𝐸[(𝑌 − 𝑚(𝑋𝑋𝑋))2]

+ 2𝐸[(𝑌 − 𝑚(𝑋𝑋𝑋))(𝑚(𝑋𝑋𝑋) − 𝑔(𝑋𝑋𝑋))]
+ 𝐸[(𝑚(𝑋𝑋𝑋) − 𝑔(𝑋𝑋𝑋))2]

• The first term is finite and does not depend on 𝑔(⋅).
• The cross term is zero by the LIE and CT.
• The last term is minimal if 𝑔(𝑋𝑋𝑋) = 𝑚(𝑋𝑋𝑋).

Independence Implications

If 𝑌 and 𝑋𝑋𝑋 are independent, then:
𝐸[𝑌 |𝑋𝑋𝑋] = 𝐸[𝑌 ]

When variables are independent, knowing 𝑋𝑋𝑋 provides no information about 𝑌 , so the condi-
tional expectation equals the unconditional expectation. The CEF becomes a constant function
that doesn’t vary with 𝑋𝑋𝑋.

In our wage example, if education and wage were completely independent, the CEF would
be a horizontal line at the overall average wage of 16.91. Each conditional density 𝑓𝑌 |𝑋𝑋𝑋=𝑥𝑥𝑥(𝑦)
would be identical to the unconditional density 𝑓𝑌 (𝑦), and the conditional means would all
equal the unconditional mean.

The fact that our CEF for wage given education has a positive slope indicates that these
variables are not independent – higher education is associated with higher expected wages.
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5.3 Linear Model Specification

Prediction Error

Consider a sample (𝑌𝑖,𝑋𝑋𝑋′
𝑖), 𝑖 = 1, … , 𝑛. We have established that the conditional expec-

tation function (CEF) 𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] is the best predictor of 𝑌𝑖 given 𝑋𝑋𝑋𝑖, minimizing the mean
squared prediction error.

This leads to the following prediction error:

𝑢𝑖 = 𝑌𝑖 − 𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖]

By construction, this error has a conditional mean of zero:

𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0

This property follows directly from the law of iterated expectations:

𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 𝐸[𝑌𝑖 − 𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] ∣ 𝑋𝑋𝑋𝑖]
= 𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] − 𝐸[𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] ∣ 𝑋𝑋𝑋𝑖]
= 𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] − 𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] = 0

We can thus always decompose the outcome as:

𝑌𝑖 = 𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] + 𝑢𝑖

where 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0. This equation is not yet a regression model. It’s simply the decomposition
of 𝑌𝑖 into its conditional expectation and an unpredictable component.

Linear Regression Model

To move to a regression framework, we impose a structural assumption about the form of the
CEF. The key assumption of the linear regression model is that the conditional expectation
is a linear function of the regressors:

𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽

Substituting this into our decomposition yields the linear regression equation:

𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖 (5.1)

with the crucial assumption:
𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0 (5.2)

73



Exogeneity

This assumption (Equation 5.2) is called exogeneity or mean independence. It ensures
that the linear function 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽 correctly captures the conditional mean of 𝑌𝑖.

Under the linear regression equation (Equation 5.1) we have the following equivalence:

𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 ⇔ 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0

Therefore, the linear regression model in its most general form is characterized by the two con-
ditions: linear regression equation (Equation 5.1) and exogenous regressors (Equation 5.2).

For example, in a wage regression, exogeneity means that the expected wage conditional on
education and experience is exactly captured by the linear combination of these variables. No
systematic pattern remains in the error term.

Model Misspecification

If the true conditional expectation function is nonlinear (e.g., if wages increase with education
at a diminishing rate), then 𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] ≠ 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽, and the model is misspecified. In such cases, the
linear model provides the best linear approximation to the true CEF, but systematic patterns
remain in the error term.

It’s important to note that 𝑢𝑖 may still be statistically dependent on 𝑋𝑋𝑋𝑖 in ways other than its
mean. For example, the variance of 𝑢𝑖 may depend on 𝑋𝑋𝑋𝑖 in the case of heteroskedasticity.
For instance, wage dispersion might increase with education level. The assumption 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] =
0 requires only that the conditional mean of the error is zero, not that the error is completely
independent of the regressors.

5.4 Population Regression Coefficient

Under the linear regression model

𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖, 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0,

we are interested in the population regression coefficient 𝛽𝛽𝛽, which indicates how the
conditional mean of 𝑌𝑖 varies linearly with the regressors in 𝑋𝑋𝑋𝑖.
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Moment Condition

A key implication of the exogeneity condition 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0 is that the regressors are mean
uncorrelated with the error term:

𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 000

This can be derived from the exogeneity condition using the LIE:

𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 𝐸[𝐸[𝑋𝑋𝑋𝑖𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖]] = 𝐸[𝑋𝑋𝑋𝑖 ⋅ 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖]] = 𝐸[𝑋𝑋𝑋𝑖 ⋅ 0] = 000

Substituting the linear model into the mean uncorrelatedness condition gives a moment con-
dition that identifies 𝛽𝛽𝛽:

000 = 𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 𝐸[𝑋𝑋𝑋𝑖(𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽)] = 𝐸[𝑋𝑋𝑋𝑖𝑌𝑖] − 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖]𝛽𝛽𝛽

Rearranging to solve for 𝛽𝛽𝛽:
𝐸[𝑋𝑋𝑋𝑖𝑌𝑖] = 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖]𝛽𝛽𝛽

Assuming that the matrix 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖] is invertible, we can express the population regression

coefficient as:
𝛽𝛽𝛽 = (𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖])
−1 𝐸[𝑋𝑋𝑋𝑖𝑌𝑖] (5.3)

This expression shows that 𝛽𝛽𝛽 is entirely determined by the joint distribution of (𝑌𝑖,𝑋𝑋𝑋′
𝑖) in the

population.

The invertibility of 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖] is guaranteed if there is no perfect linear relationship among the

regressors. In particular, no pair of regressors should be perfectly correlated, and no regressor
should be a perfect linear combination of the other regressors.

OLS Estimation

Recall that we have estimated population moments like 𝐸[𝑌 ] and Var(𝑌 ) by their sample
counterparts, i.e. 𝑌 and 𝜎̂2

𝑌 . This estimation principle is known as the method of moments,
where we replace population moments by their corresponding sample moments.

To estimate the population regression coefficient

𝛽𝛽𝛽 = (𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖])

−1 𝐸[𝑋𝑋𝑋𝑖𝑌𝑖]

using a given i.i.d. sample (𝑌𝑖,𝑋𝑋𝑋′
𝑖), 𝑖 = 1, … , 𝑛, we replace all population moments by their

sample counterparts, i.e.,

̂𝛽𝛽𝛽 = ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1

( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖) .
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This can be simplified to the familiar form

̂𝛽𝛽𝛽 = (
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1

(
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖) ,

or ̂𝛽𝛽𝛽 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌 , which is called the ordinary least squares (OLS) estimator.

5.5 Consistency

Recall that the law of large numbers for a univariate i.i.d. dataset 𝑌1, … , 𝑌𝑛 states that the
sample average converges in probability to the population mean:

1
𝑛

𝑛
∑
𝑖=1

𝑌𝑖
𝑝

→ 𝐸[𝑌 ] as 𝑛 → ∞.

The OLS estimator is a function of two sample averages: the sample second moment matrix
1
𝑛 ∑𝑛

𝑖=1 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖 and the sample cross-moment vector 1

𝑛 ∑𝑛
𝑖=1 𝑋𝑋𝑋𝑖𝑌𝑖.

If (𝑌𝑖,𝑋𝑋𝑋′
𝑖), 𝑖 = 1, … , 𝑛, are i.i.d., then the multivariate version of the law of large numbers

applies:
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖

𝑝
→ 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖],
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖
𝑝

→ 𝐸[𝑋𝑋𝑋𝑖𝑌𝑖].

This means that convergence in probability holds componentwise. Each element of the sample
moment matrix and vector converges to its corresponding population counterpart.

The continuous mapping theorem and Slutsky’s lemma enable us to extend these convergence
results to more complex expressions.

• If 𝑓(⋅) is a continuous function and 𝑉𝑛
𝑝

→ 𝑐, then 𝑓(𝑉𝑛)
𝑝

→ 𝑓(𝑐) (continuous mapping
theorem).

• If 𝑉𝑛
𝑝

→ 𝑐 and 𝑊𝑛
𝑝

→ 𝑑 then 𝑉𝑛𝑊𝑛
𝑝

→ 𝑐𝑑 (Slutsky’s lemma).

Since matrix inversion is a continuous function, the continuous mapping theorem implies:

( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1 𝑝
→ (𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖])
−1.

Applying Slutsky’s lemma to combine the two convergence results yields:

̂𝛽𝛽𝛽 = ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1

( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑌𝑖)

𝑝
→ (𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖])
−1𝐸[𝑋𝑋𝑋𝑖𝑌𝑖] = 𝛽𝛽𝛽.
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This establishes the consistency of the OLS estimator. We used the following regularity con-
ditions:

1) Random sampling: (𝑌𝑖,𝑋𝑋𝑋′
𝑖) are i.i.d.

2) Exogeneity (mean independence): 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0.
3) Finite second moments: 𝐸[𝑋2

𝑖𝑗] < ∞ and 𝐸[𝑌 2
𝑖 ] < ∞.

4) Full rank: 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖] is positive definite (hence invertible).

Neither normality nor homoskedasticity is required for consistency. Heteroskedasticity is fully
compatible with OLS consistency.

For any two random variables 𝑌 and 𝑍, the Cauchy-Schwarz inequality states |𝐸[𝑌 𝑍]| ≤
√𝐸[𝑌 2]𝐸[𝑍2]. Specifically, |𝐸[𝑋𝑖𝑘𝑋𝑖𝑙]| ≤ √𝐸[𝑋2

𝑖𝑘]𝐸[𝑋2
𝑖𝑙] and |𝐸[𝑋𝑖𝑘𝑌𝑖]| ≤ √𝐸[𝑋2

𝑖𝑘]𝐸[𝑌 2
𝑖 ].

Therefore, the finite second moment condition ensures that 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖] and 𝐸[𝑋𝑋𝑋𝑖𝑌𝑖] are finite.

The full rank condition ensures that 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖]−1 exists. Thus, the full rank and finite second

moments conditions ensure that 𝛽𝛽𝛽 is well-defined.

The exogeneity condition is crucial for OLS consistency. Without it, the model is misspecified,
Equation 5.3 does not hold, and the OLS estimator would converge to the best linear predictor,
which is the 𝛽𝛽𝛽∗ that minimizes 𝐸[(𝑌𝑖 − 𝑋𝑋𝑋′

𝑖𝑏𝑏𝑏)2].
Just as with the univariate law of large numbers, the i.i.d. assumption can be relaxed to
accommodate other sampling schemes. Under clustered sampling with independent clusters,
OLS consistency holds if the number of clusters grows large relative to cluster size as 𝑛 → ∞.
For time series data, (𝑌𝑖,𝑋𝑋𝑋′

𝑖) must be stationary, and observations (𝑌𝑖,𝑋𝑋𝑋′
𝑖) and (𝑌𝑖−𝑗,𝑋𝑋𝑋′

𝑖−𝑗)
must become independent as 𝑗 increases (strong mixing / weak dependence).

5.6 R Code

statistics-sec05.R
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6 Effects

6.1 Marginal Effects

Consider the regression model of hourly wage on education (years of schooling),

wage𝑖 = 𝛽1 + 𝛽2edu𝑖 + 𝑢𝑖, 𝑖 = 1, … , 𝑛,

where the exogeneity assumption holds:

𝐸[𝑢𝑖|edu𝑖] = 0.

The population regression function, which gives the conditional expectation of wage given
education, can be derived as:

𝑚(edu𝑖) = 𝐸[wage𝑖|edu𝑖]
= 𝛽1 + 𝛽2 ⋅ edu𝑖 + 𝐸[𝑢𝑖|edu𝑖]
= 𝛽1 + 𝛽2 ⋅ edu𝑖

Thus, the average wage level of all individuals with 𝑧 years of schooling is:

𝑚(𝑧) = 𝛽1 + 𝛽2 ⋅ 𝑧.

Interpretation of Coefficients

In the linear regression model
𝑌𝑖 = 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽 + 𝑢𝑖,
the coefficient vector 𝛽𝛽𝛽 captures the way the conditional mean of 𝑌𝑖 changes with the
regressors 𝑋𝑋𝑋𝑖. Under the exogeneity assumption, we have

𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖] = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 = 𝛽1 + 𝛽2𝑋𝑖2 + … + 𝛽𝑘𝑋𝑖𝑘.

This linearity allows for a simple interpretation. The coefficient 𝛽𝑗 represents the partial
derivative of the conditional mean with respect to 𝑋𝑖𝑗:

𝜕𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖]
𝜕𝑋𝑖𝑗

= 𝛽𝑗.
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This means that 𝛽𝑗 measures the marginal effect of a one-unit increase in 𝑋𝑖𝑗 on the expected
value of 𝑌𝑖, holding all other variables constant.

If 𝑋𝑖𝑗 is a dummy variable (i.e., binary), then 𝛽𝑗 measures the discrete change in 𝐸[𝑌𝑖|𝑋𝑋𝑋𝑖]
when 𝑋𝑖𝑗 changes from 0 to 1.

For our wage-education example, the marginal effect of education is:

𝜕𝐸[wage𝑖|edu𝑖]
𝜕edu𝑖

= 𝛽2.

This population marginal effect parameter can be estimated using OLS:

cps = read.csv("cps.csv")
lm(wage ~ education, data = cps)

Call:
lm(formula = wage ~ education, data = cps)

Coefficients:
(Intercept) education

-16.448 2.898

Interpretation: People with one more year of education are paid on average $2.90 USD more per
hour than people with one year less of education, assuming the exogeneity condition holds.

Correlation vs. Causation

The coefficient 𝛽2 describes the correlative relationship between education and wages, not
necessarily a causal one. To see this connection to correlation, consider the covariance of the
two variables:

𝐶𝑜𝑣(wage𝑖, edu𝑖) = 𝐶𝑜𝑣(𝛽1 + 𝛽2 ⋅ edu𝑖 + 𝑢𝑖, edu𝑖)
= 𝐶𝑜𝑣(𝛽1 + 𝛽2 ⋅ edu𝑖, edu𝑖) + 𝐶𝑜𝑣(𝑢𝑖, edu𝑖)

The term 𝐶𝑜𝑣(𝑢𝑖, edu𝑖) equals zero due to the exogeneity assumption. To see this, recall that
𝐸[𝑢𝑖] = 𝐸[𝐸[𝑢𝑖|edu𝑖]] = 0 by the LIE, and similarly

𝐸[𝑢𝑖edu𝑖] = 𝐸[𝐸[𝑢𝑖edu𝑖|edu𝑖]] = 𝐸[𝐸[𝑢𝑖|edu𝑖]edu𝑖] = 0,
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which implies
𝐶𝑜𝑣(𝑢𝑖, edu𝑖) = 𝐸[𝑢𝑖edu𝑖] − 𝐸[𝑢𝑖] ⋅ 𝐸[edu𝑖] = 0

The coefficient 𝛽2 is thus proportional to the population correlation coefficient:

𝛽2 = 𝐶𝑜𝑣(wage𝑖, edu𝑖)
𝑉 𝑎𝑟(edu𝑖)

= 𝐶𝑜𝑟𝑟(wage𝑖, edu𝑖) ⋅ 𝑠𝑑(wage𝑖)
𝑠𝑑(edu𝑖)

.

The marginal effect is a correlative effect and does not necessarily reveal the source of the
higher wage levels for people with more education.

Regression relationships do not necessarily imply causal relationships.

People with more education may earn more for various reasons:

• They might be naturally more talented or capable
• They might come from wealthier families with better connections
• They might have access to better resources and opportunities
• Education itself might actually increase productivity and earnings

Figure 6.1: A DAG (directed acyclic graph) showing potential confounding factors in the
education-wage relationship

The coefficient 𝛽2 measures how strongly education and earnings are correlated, but this
association could be due to other factors that correlate with both wages and education, such
as:

• Family background (parental education, family income, ethnicity)
• Personal background (gender, intelligence, motivation)

Remember: Correlation does not imply causation!
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Omitted Variable Bias

To understand the causal effect of an additional year of education on wages, it is crucial to
consider the influence of family and personal background. These factors, if not included in our
analysis, are known as omitted variables. An omitted variable is one that:

(i) is correlated with the dependent variable (wage𝑖, in this scenario)

(ii) is correlated with the regressor of interest (edu𝑖)

(iii) is omitted in the regression

The presence of omitted variables means that we cannot be sure that the regression relationship
between education and wages is purely causal. We say that we have omitted variable bias
for the causal effect of the regressor of interest.

The coefficient 𝛽2 in the simple regression model measures the correlative or marginal effect, not
the causal effect. This must always be kept in mind when interpreting regression coefficients.

Control Variables

We can include control variables in the linear regression model to reduce omitted variable
bias so that we can interpret 𝛽2 as a ceteris paribus marginal effect (ceteris paribus means
holding other variables constant).

For example, let’s include years of experience as well as ethnic identity and gender dummy
variables for Black and female:

wage𝑖 = 𝛽1 + 𝛽2edu𝑖 + 𝛽3exper𝑖 + 𝛽4Black𝑖 + 𝛽5fem𝑖 + 𝑢𝑖.

In this case,

𝛽2 = 𝜕𝐸[wage𝑖|edu𝑖, exper𝑖,Black𝑖, fem𝑖]
𝜕edu𝑖

is the marginal effect of education on expected wages, holding experience, ethnic identity, and
gender fixed.

lm(wage ~ education + experience + Black + female, data = cps)

Call:
lm(formula = wage ~ education + experience + Black + female,

data = cps)
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Coefficients:
(Intercept) education experience Black female

-21.7089 3.1350 0.2443 -2.8554 -7.4363

Interpretation of coefficients:

• Education: Given the same experience, ethnic identity (whether the individual identifies
as Black), and gender, people with one more year of education are paid on average $3.14
USD more than people with one year less of education.

• Experience: Each additional year of experience is associated with an average wage
increase of $0.24 USD per hour, holding other factors constant.

• Black: Black workers earn on average $2.86 USD less per hour than non-Black workers
with the same education, experience, and gender.

• Female: Women earn on average $7.43 USD less per hour than men with the same
education, experience, and ethnic identity.

Note: This regression does not control for other unobservable characteristics (such as ability)
or variables not included in the regression (such as quality of education), so omitted variable
bias may still be present.

Good vs. Bad Controls

It’s important to recognize that control variables are always selected with respect to a par-
ticular regressor of interest. A researcher typically focuses on estimating the effect of one
specific variable (like education), and control variables must be designed specifically for this
relationship.

In causal inference terminology, we can distinguish between different types of variables:

• Confounders: Variables that affect both the regressor of interest and the outcome.
These are good controls because they help isolate the causal effect of interest.

• Mediators: Variables through which the regressor of interest affects the outcome. Con-
trolling for mediators can block part of the causal effect we’re trying to estimate.

• Colliders: Variables that are affected by both the regressor of interest and the outcome
(or by factors that determine the outcome). Controlling for colliders can create spurious
associations.

Confounders

Examples of good controls (confounders) for education are:

• Parental education level (affects both a person’s education and their wage potential)
• Region of residence (geographic factors can influence education access and job markets)
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• Family socioeconomic background (affects educational opportunities and wage potential)

Figure 6.2: A DAG of the education-wage relationship with a family confounder

Mediators and Colliders

Examples of bad controls include:

• Mediators: Variables that are part of the causal pathway from education to wages

– Current job position (education → job position → wage)
– Professional sector (education may determine which sector someone works in)
– Number of professional certifications (likely a result of education level)

Figure 6.3: A DAG of the education-wage relationship with job position mediator

• Colliders: Variables affected by both education and wages (or their determinants)
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– Happiness/life satisfaction (might be affected independently by both education and
wages)

– Work-life balance (both education and wages might affect this independently)

Figure 6.4: A DAG of the education-wage relationship with happiness collider

Bad controls create two problems:

1. Statistical issue: High correlation with the variable of interest (like education) causes
high variance in the coefficient estimate (high collinearity).

2. Causal inference issue: They distort the relationship we’re trying to estimate by either
blocking part of the causal effect (mediators) or creating artificial associations (colliders).

Good control variables are typically determined before the level of education is determined,
while bad controls are often outcomes of the education process itself or are jointly determined
with wages.

The appropriate choice of control variables requires not just statistical knowledge but also
subject-matter expertise about the causal structure of the relationships being studied.

6.2 Application: Class Size Effect

Let’s apply these concepts to a real-world research question: How does class size affect student
performance?

Recall the CASchools dataset used in the Stock and Watson textbook, which contains infor-
mation on California school characteristics:

data(CASchools, package = "AER")
CASchools$STR = CASchools$students/CASchools$teachers
CASchools$score = (CASchools$read+CASchools$math)/2
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We are interested in the effect of the student-teacher ratio STR (class size) on the average
test score score. Following our previous discussion on causal inference, we need to consider
potential confounding factors that might affect both class sizes and test scores.

Control Strategy

Let’s examine several control variables:

• english: proportion of students whose primary language is not English.
• lunch: proportion of students eligible for free/reduced-price meals.
• expenditure: total expenditure per pupil.

First, we should check whether these variables are correlated with both our regressor of interest
(STR) and the outcome (score):

library(dplyr)
CASchools |> select(STR, score, english, lunch, expenditure) |> cor()

STR score english lunch expenditure
STR 1.0000000 -0.2263627 0.18764237 0.13520340 -0.61998216
score -0.2263627 1.0000000 -0.64412381 -0.86877199 0.19127276
english 0.1876424 -0.6441238 1.00000000 0.65306072 -0.07139604
lunch 0.1352034 -0.8687720 0.65306072 1.00000000 -0.06103871
expenditure -0.6199822 0.1912728 -0.07139604 -0.06103871 1.00000000

The correlation matrix reveals that english, lunch, and expenditure are indeed correlated
with both STR and score. This suggests they could be confounders that, if omitted, might
bias our estimate of the class size effect.

Let’s implement a control strategy, adding potential confounders one by one to see how the
estimated marginal effect of class size changes:

fit1 = lm(score ~ STR, data = CASchools)
fit2 = lm(score ~ STR + english, data = CASchools)
fit3 = lm(score ~ STR + english + lunch, data = CASchools)
fit4 = lm(score ~ STR + english + lunch + expenditure, data = CASchools)
library(modelsummary)
mymodels = list(fit1, fit2, fit3, fit4)
modelsummary(mymodels,

statistic = NULL,
gof_map = c("nobs", "r.squared", "adj.r.squared", "rmse"))

85



(1) (2) (3) (4)
(Intercept) 698.933 686.032 700.150 665.988
STR −2.280 −1.101 −0.998 −0.235
english −0.650 −0.122 −0.128
lunch −0.547 −0.546
expenditure 0.004
Num.Obs. 420 420 420 420
R2 0.051 0.426 0.775 0.783
R2 Adj. 0.049 0.424 0.773 0.781
RMSE 18.54 14.41 9.04 8.86

Interpretation of Marginal Effects

Let’s interpret the coefficients on STR from each model more precisely:

• Model (1): Between two classes that differ by one student, the class with more students
scores on average 2.280 points lower. This represents the unadjusted association without
controlling for any confounding factors.

• Model (2): Between two classes that differ by one student but have the same share of
English learners, the larger class scores on average 1.101 points lower. Controlling for
English learner status cuts the estimated effect by more than half.

• Model (3): Between two classes that differ by one student but have the same share
of English learners and and the same share of students eligible for reduced-price meals,
the larger class scores on average 0.998 points lower. Adding this socioeconomic control
further reduces the estimated effect slightly.

• Model (4): Between two classes that differ by one student but have the same share
of English learners, students with reduced meals, and per-pupil expenditure, the larger
class scores on average 0.235 points lower. This represents a dramatic reduction from
the previous model.

The sequential addition of controls demonstrates how sensitive the estimated marginal effect
is to model specification. Each coefficient represents the partial derivative of the expected test
score with respect to the student-teacher ratio, holding constant the variables included in that
particular model.
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Identifying Good and Bad Controls

Based on our causal framework from the previous section, we can evaluate our control vari-
ables:

• Confounders (good controls): english and lunch are likely good controls because
they represent pre-existing student characteristics that influence both class size assign-
ments and test performance. For instance, schools with a higher share of immigrants
or lower-income households may have on average higher class sizes and lower reading
scores.

STR ← english → score

• Mediator (bad control): expenditure appears to be a bad control because it’s
likely a mediator in the causal pathway from class size to test scores. Smaller classes
mechanically increase per-pupil expenditure through higher teacher salary costs per stu-
dent.

STR → expenditure → score

When we control for expenditure, we block this causal pathway and “control away” part of
the effect of STR on score we actually want to measure. This explains the dramatic drop in
the coefficient in Model (4) and suggests this model likely underestimates the true effect of
class size.

This application demonstrates the crucial importance of thoughtful control variable selection
in regression analysis. The estimated marginal effect of STR on score varies substantially
depending on which variables we control for. Based on causal reasoning, we should prefer
Model (3) with the appropriate confounders but without the mediator.

6.3 Polynomials

Experience and wages

A linear dependence of wages and experience is a strong assumption. We can reasonably
expect a nonlinear marginal effect of another year of experience on wages. For example, the
effect may be higher for workers with 5 years of experience than for those with 40 years of
experience.

Polynomials can be used to specify a nonlinear regression function:

wage𝑖 = 𝛽1 + 𝛽2exper𝑖 + 𝛽3exper2
𝑖 + 𝛽4exper3

𝑖 + 𝑢𝑖.
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## we focus on people with Asian background only for illustration
cps.as = cps |> subset(Asian == 1)
fit = lm(wage ~ experience + I(experience^2) + I(experience^3),

data = cps.as)
beta = fit$coefficients
beta |> round(4)

(Intercept) experience I(experience^2) I(experience^3)
20.4159 1.2067 -0.0449 0.0004

## Scatterplot
plot(wage ~ experience, data = cps.as, ylim = c(0,100))
## plot the cubic function for fitted wages
curve(
beta[1] + beta[2]*x + beta[3]*x^2 + beta[4]*x^3,
from = 0, to = 70, add=TRUE, col='red', lwd=2
)
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The marginal effect depends on the years of experience:
𝜕𝐸[wage𝑖|exper𝑖]

𝜕exper𝑖
= 𝛽2 + 2𝛽3exper𝑖 + 3𝛽4exper2

𝑖 .

For instance, the additional wage for a worker with 11 years of experience compared to a
worker with 10 years of experience is on average

1.2013 + 2 ⋅ (−0.0447) ⋅ 10 + 3 ⋅ 0.0004 ⋅ 102 = 0.4273.
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Income and test scores

Another example is the relationship between the income of schooling districts and their test
scores.

Income and test score are positively correlated:

cor(CASchools$income, CASchools$score)

[1] 0.7124308

School districts with above-average income tend to achieve above-average test scores. But
does a linear regression adequately model the data? Let’s compare a linear with a quadratic
regression specification.

linear = lm(score ~ income, data = CASchools)
linear

Call:
lm(formula = score ~ income, data = CASchools)

Coefficients:
(Intercept) income

625.384 1.879

Estimated linear regression function:

ŝcore = 625.4 + 1.88 inc.

quad = lm(score ~ income + I(income^2), data = CASchools)
quad

Call:
lm(formula = score ~ income + I(income^2), data = CASchools)

Coefficients:
(Intercept) income I(income^2)
607.30174 3.85099 -0.04231
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Estimated quadratic regression function:

ŝcore = 607.3 + 3.85 inc − 0.0423 inc2.

# Create scatterplot
plot(score ~ income, data = CASchools,

xlab = "District Income (thousands)",
ylab = "Test Score")

# Add fitted curves
curve(coef(linear)[1] + coef(linear)[2]*x, add = TRUE, col = "red", lwd=2)
curve(coef(quad)[1] + coef(quad)[2]*x + coef(quad)[3]*x^2, add = TRUE, col = "blue", lwd=2)

# Add legend
legend("bottomright", c("Quadratic", "Linear"), col = c("blue", "red"), lwd = 2)
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The plot shows that the linear regression line seems to overestimate the true relationship when
income is either very high or very low and it tends to underestimate it for the middle income
group.

The quadratic function appears to provide a better fit to the data compared to the linear
function.
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6.4 Logarithms

Log-income and test scores

Another approach to estimate a concave nonlinear regression function involves using a loga-
rithmic regressor.

# estimate a linear-log model
linlog = lm(score ~ log(income), data = CASchools)
linlog

Call:
lm(formula = score ~ log(income), data = CASchools)

Coefficients:
(Intercept) log(income)

557.83 36.42

The estimated regression function is

ŝcore = 557.8 + 36.42 log(inc)

# Create scatterplot
plot(score ~ income, data = CASchools,

xlab = "District Income (thousands)",
ylab = "Test Score")

# Add fitted curves
curve(coef(linlog)[1] + coef(linlog)[2]*log(x), add = TRUE, col = "blue", lwd = 2)
curve(coef(linear)[1] + coef(linear)[2]*x, add = TRUE, col = "red", lwd = 2)

# Add legend
legend("bottomright", c("Linear-log", "Linear"), col = c("blue", "red"), lwd = 2)
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linear quad linlog
(Intercept) 625.384 607.302 557.832
income 1.879 3.851
I(income^2) −0.042
log(income) 36.420
Num.Obs. 420 420 420
R2 0.508 0.556 0.563
R2 Adj. 0.506 0.554 0.561
RMSE 13.35 12.68 12.59
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library(modelsummary)
modelsummary(list("linear" = linear, "quad" = quad, "linlog" = linlog),

statistic = NULL,
gof_map = c("nobs", "r.squared", "adj.r.squared", "rmse"))

We observe that the adjusted R-squared is highest for the logarithmic model, indicating that
the latter is the most suitable.

The coefficients have a different interpretation.

• Assuming the linear model specification is correct, we have

𝐸[score|inc] = 𝛽1 + 𝛽2inc.
The marginal effect of income on score is

𝜕𝐸[score|inc]
𝜕inc = 𝛽2.
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Students from a district with $1000 higher income have on average 1.879 points higher
scores.

• Assuming the quadratic model specification is correct, we have

𝐸[score|inc] = 𝛽1 + 𝛽2inc + 𝛽3inc
2.

The marginal effect income on score depends on the income level:

𝜕𝐸[score|inc]
𝜕inc = 𝛽2 + 2𝛽3inc.

When considering a district with x income, students with $1000 higher income have on
average 3.85 - 0.0846x points higher scores.

• Assuming the logarithmic model specification is correct, we have

𝐸[score|inc] = 𝛽1 + 𝛽2 log(inc).
The slope coefficient represents the marginal effect of log(income) on score:

𝜕𝐸[score|inc]
𝜕 log(inc) = 𝛽2.

Instead, the marginal effect of income on score is

𝜕𝐸[score|inc]
𝜕inc = 𝛽2 ⋅ 1

inc ,
so

𝜕𝐸[score|inc]⏟⏟⏟⏟⏟
absolute change

= 𝛽2 ⋅ 𝜕inc
inc⏟

percentage change

.

Students from a district with 1% higher income have on average 36.42 ⋅ 1% = 0.3642
points higher scores.

Education and log-wages

If a convex relationship is expected, we can also use a logarithmic transformation for the
dependent variable:

log(wage𝑖) = 𝛽1 + 𝛽2edu𝑖 + 𝑢𝑖

log_model = lm(log(wage) ~ education, data = cps.as)
linear_model = lm(wage ~ education, data = cps.as)
plot(wage ~ education, data = cps.as, ylim = c(0,80), xlim = c(4,22))
abline(linear_model, col="blue")
coef = coefficients(log_model)
curve(exp(coef[1]+coef[2]*x), add=TRUE, col="red")
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The marginal effect of education on log(wage) is

𝜕𝐸[log(wage𝑖)|𝑒𝑑𝑢𝑖]
𝜕edu𝑖

= 𝛽2.

To interpret 𝛽2 in terms of changes of wage instead of log(wage), consider the following
approximation:

𝐸[wage𝑖|edu𝑖] ≈ exp(𝐸[log(wage𝑖)|edu𝑖]).
The left-hand expression is the conventional conditional mean, and the right-hand expression
is the geometric mean. The geometric mean is slightly smaller because 𝐸[log(𝑌 )] < log(𝐸[𝑌 ]),
but this difference is small unless the data is highly skewed.

The marginal effect of a change in 𝑒𝑑𝑢 on the geometric mean of 𝑤𝑎𝑔𝑒 is

𝜕𝑒𝑥𝑝(𝐸[log(wage𝑖)|edu𝑖])
𝜕edu𝑖

= 𝑒𝑥𝑝(𝐸[log(wage𝑖)|edu𝑖])⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
outer derivative

⋅𝛽2.

Using the geometric mean approximation from above, we get

𝜕𝐸[wage𝑖|edu𝑖]
𝐸[wage𝑖|edu𝑖]⏟⏟⏟⏟⏟⏟⏟

percentage
change

≈ 𝜕𝑒𝑥𝑝(𝐸[log(wage𝑖)|edu𝑖])
𝑒𝑥𝑝(𝐸[log(wage𝑖)|edu𝑖])

= 𝛽2 ⋅ 𝜕edu𝑖⏟
absolute
change

.

log_model
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Call:
lm(formula = log(wage) ~ education, data = cps.as)

Coefficients:
(Intercept) education

1.3783 0.1113

Interpretation: A person with one more year of education has a wage that is 11.13% higher on
average.

In addition to the linear-log and log-linear specifications, we also have the log-log specifica-
tion

log(𝑌 ) = 𝛽1 + 𝛽2 log(𝑋) + 𝑢.

Log-log interpretation: When 𝑋 is 1% higher, we observe, on average, a 𝛽2% higher 𝑌 .

6.5 Interactions

A linear regression with interaction terms:

wage𝑖 = 𝛽1 + 𝛽2edu𝑖 + 𝛽3fem𝑖 + 𝛽4marr𝑖 + 𝛽5(marr𝑖 ⋅ fem𝑖) + 𝑢𝑖

lm(wage ~ education + female + married + married:female, data = cps)

Call:
lm(formula = wage ~ education + female + married + married:female,

data = cps)

Coefficients:
(Intercept) education female married female:married

-18.241 2.877 -3.025 7.352 -6.016

The marginal effect of gender depends on the person’s marital status:

𝜕𝐸[wage𝑖|edu𝑖, fem𝑖,marr𝑖]
𝜕fem𝑖

= 𝛽3 + 𝛽5marr𝑖

Since female is a dummy variable, we interpret the marginal effect as a discrete 0 → 1 change
(ceteris paribus), not literally a derivative.
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Interpretation: Given the same education, unmarried women are paid on average 3.27 USD
less than unmarried men, and married women are paid on average 3.27+5.77=9.04 USD less
than married men.

The marginal effect of the marital status depends on the person’s gender:

𝜕𝐸[wage𝑖|edu𝑖, fem𝑖,marr𝑖]
𝜕marr𝑖

= 𝛽4 + 𝛽5fem𝑖

Interpretation: Given the same education, married men are paid on average 7.17 USD more
than unmarried men, and married women are paid on average 7.17-5.77=1.40 USD more than
unmarried women.

6.6 R Code

statistics-sec06.R
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7 Inference

7.1 Strict Exogeneity

Recall the linear regression framework:

• Regression equation 𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖, 𝑖 = 1, … , 𝑛

• Exogeneity condition 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0
• i.i.d. sample (𝑌𝑖,𝑋𝑋𝑋′

𝑖) with finite second moments
• Full rank 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖]

The exogeneity condition

𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0

ensures that the regressors are uncorrelated with the error at the individual observation level.

The i.i.d. condition implies (𝑌𝑖,𝑋𝑋𝑋′
𝑖) is independent of (𝑌𝑗,𝑋𝑋𝑋′

𝑗) for all 𝑗 ≠ 𝑖. Hence, 𝑋𝑋𝑋𝑗 is
independent of 𝑢𝑖 = 𝑌𝑖 − 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽 for all 𝑗 ≠ 𝑖, so

𝐸[𝑢𝑖|𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛] = 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖].

Together, exogeneity and i.i.d. sampling imply strict exogeneity:

𝐸[𝑢𝑖|𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛] = 0 for all 𝑖.

In cross-section with i.i.d. sampling, exogeneity at the unit level implies strict exogeneity.

Equivalently, in matrix form:
𝐸[𝑢𝑢𝑢|𝑋𝑋𝑋] = 000.

Strict exogeneity requires the entire vector of errors 𝑢𝑢𝑢 to be mean independent of the full
regressor matrix 𝑋𝑋𝑋. That is, no systematic relationship exists between any regressors and any
error term across observations.
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7.2 Unbiasedness

Under strict exogeneity, the OLS estimator ̂𝛽𝛽𝛽 is unbiased:

𝐸[ ̂𝛽𝛽𝛽] = 𝛽𝛽𝛽.

Proof: Recall the model equation in matrix form:

𝑌𝑌𝑌 = 𝑋𝑋𝑋𝛽𝛽𝛽 + 𝑢𝑢𝑢.

Plugging this into the OLS formula:

̂𝛽𝛽𝛽 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌
= (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′(𝑋𝑋𝑋𝛽𝛽𝛽 + 𝑢𝑢𝑢)
= 𝛽𝛽𝛽 + (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑢𝑢𝑢.

Taking the conditional expectation:

𝐸[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋] = 𝛽𝛽𝛽 + (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝐸[𝑢𝑢𝑢|𝑋𝑋𝑋].

Since 𝐸[𝑢𝑢𝑢|𝑋𝑋𝑋] = 000, the conditional mean is

𝐸[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋] = 𝛽𝛽𝛽.

By the LIE, the unconditional mean becomes

𝐸[ ̂𝛽𝛽𝛽] = 𝐸[𝐸[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋]] = 𝛽𝛽𝛽.

Thus, each element of the OLS estimator is unbiased:

𝐸[ ̂𝛽𝑗] = 𝛽𝑗 for 𝑗 = 1, … , 𝑘.

7.3 Sampling Variance of OLS

The OLS estimator ̂𝛽𝛽𝛽 provides a point estimate of the unknown population parameter 𝛽𝛽𝛽.
For example, in the regression

wage𝑖 = 𝛽1 + 𝛽2education𝑖 + 𝛽3female𝑖 + 𝑢𝑖,

we obtain specific coefficient estimates:
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cps = read.csv("cps.csv")
fit = lm(wage ~ education + female, data = cps)
fit |> coef()

(Intercept) education female
-14.081788 2.958174 -7.533067

The estimate for education is ̂𝛽2 = 2.958. However, this point estimate tells us nothing about
how far it might be from the true value 𝛽2.

That is, it does not reflect estimation uncertainty, which arises because ̂𝛽𝛽𝛽 depends on
a finite sample that could have turned out differently if a different dataset from the same
population had been used.

Larger samples tend to reduce estimation uncertainty, but in practice we only observe one
finite sample. To quantify this uncertainty, we study the sampling variance of the OLS
estimator:

Var( ̂𝛽𝛽𝛽|𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛) = Var( ̂𝛽𝛽𝛽|𝑋𝑋𝑋),
the conditional variance of ̂𝛽𝛽𝛽 given the regressors 𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛.

Sampling variance of OLS:

Under i.i.d. sampling, the OLS covariance matrix is

Var( ̂𝛽𝛽𝛽|𝑋𝑋𝑋) = (
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1 𝑛
∑
𝑖=1

𝜎2
𝑖 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖(
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1
,

where 𝜎2
𝑖 = 𝐸[𝑢2

𝑖 |𝑋𝑋𝑋𝑖].
In matrix notation, this can be equivalently written as

Var( ̂𝛽𝛽𝛽|𝑋𝑋𝑋) = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′Var(𝑢𝑢𝑢|𝑋𝑋𝑋)𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

Proof: Recall the general rule that for any matrix 𝐴𝐴𝐴,

Var(𝐴𝐴𝐴𝑢𝑢𝑢) = 𝐴𝐴𝐴Var(𝑢𝑢𝑢)𝐴𝐴𝐴′.

Hence, with 𝐴𝐴𝐴 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′, by the symmetry of (𝑋𝑋𝑋′𝑋𝑋𝑋)−1,

Var( ̂𝛽𝛽𝛽|𝑋𝑋𝑋) = Var(𝛽𝛽𝛽 + (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑢𝑢𝑢|𝑋𝑋𝑋)
= Var((𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑢𝑢𝑢|𝑋𝑋𝑋)
= (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′Var(𝑢𝑢𝑢|𝑋𝑋𝑋)((𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′)′

= (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′Var(𝑢𝑢𝑢|𝑋𝑋𝑋)𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

99



Under i.i.d. sampling, conditional on 𝑋𝑋𝑋, 𝑢𝑖 and 𝑢𝑗 are independent for 𝑖 ≠ 𝑗, so

𝐸[𝑢𝑖𝑢𝑗|𝑋𝑋𝑋] = 𝐸[𝑢𝑖|𝑋𝑋𝑋] 𝐸[𝑢𝑗|𝑋𝑋𝑋] = 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] 𝐸[𝑢𝑗|𝑋𝑋𝑋𝑗] = 0,

and the conditional covariance matrix of 𝑢𝑢𝑢 takes a diagonal form:

Var(𝑢𝑢𝑢|𝑋𝑋𝑋) =
⎛⎜⎜⎜⎜
⎝

𝜎2
1 0 ⋯ 0

0 𝜎2
2 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜎2

𝑛

⎞⎟⎟⎟⎟
⎠

.

Also note: 𝑋𝑋𝑋′Var(𝑢𝑢𝑢|𝑋𝑋𝑋)𝑋𝑋𝑋 = ∑𝑛
𝑖=1 𝜎2

𝑖 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖 and 𝑋𝑋𝑋′𝑋𝑋𝑋 = ∑𝑛

𝑖=1 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖.

Homoskedasticity

While 𝑢𝑖 is uncorrelated with 𝑋𝑋𝑋𝑖 under the exogeneity assumption, its variance may depend
on 𝑋𝑋𝑋𝑖. We say that the errors are heteroskedastic:

𝜎2
𝑖 = Var(𝑢𝑖|𝑋𝑋𝑋𝑖) = 𝜎2(𝑋𝑋𝑋𝑖).

In the specific situation where the conditional variance of the error does not depend on 𝑋𝑋𝑋𝑖
and is equal to 𝜎2 for any value of 𝑋𝑋𝑋𝑖, we say that the errors are homoskedastic:

𝜎2 = Var(𝑢𝑖) = Var(𝑢𝑖|𝑋𝑋𝑋𝑖) for all 𝑖.

The homoskedastic error covariance matrix has the following simple form:

Var(𝑢𝑢𝑢|𝑋𝑋𝑋) =
⎛⎜⎜⎜⎜
⎝

𝜎2 0 ⋯ 0
0 𝜎2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜎2

⎞⎟⎟⎟⎟
⎠

= 𝜎2𝐼𝐼𝐼𝑛.

Because 𝑋𝑋𝑋′Var(𝑢𝑢𝑢|𝑋𝑋𝑋)𝑋𝑋𝑋 = 𝜎2𝑋𝑋𝑋′𝑋𝑋𝑋, the resulting OLS covariance matrix reduces to

Var( ̂𝛽𝛽𝛽|𝑋𝑋𝑋) = 𝜎2(𝑋𝑋𝑋′𝑋𝑋𝑋)−1 = 𝜎2(
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1
.

7.4 Gaussian distribution

Univariate Normal distribution

The Gaussian distribution, also known as the normal distribution, is a fundamental concept
in statistics.
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A random variable 𝑍 is said to follow a normal distribution if it has the following probability
density function (PDF):

𝑓𝑍(𝑧) = 1√
2𝜋𝜎2 exp( − (𝑧 − 𝜇)2

2𝜎2 ).

Formally, we denote this as 𝑍 ∼ 𝒩(𝜇, 𝜎2), meaning that 𝑍 is normally distributed with mean
𝜇 and variance 𝜎2.

−4 0 4 8

0.
00

0.
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0.
20

PDF of N(2,2)

−4 0 4 8

0.
0

0.
4

0.
8

CDF of N(2,2)

The normal distribution with mean 0 and variance 1 is called the standard normal distri-
bution. It has the PDF

𝜙(𝑢) = 1√
2𝜋 exp( − 𝑢2

2 )

and its CDF is
Φ(𝑎) = ∫

𝑎

−∞
𝜙(𝑢) 𝑑𝑢.

𝒩(0, 1) is symmetric around zero:

𝜙(𝑢) = 𝜙(−𝑢), Φ(𝑎) = 1 − Φ(−𝑎).

Standardizing: If 𝑍 ∼ 𝒩(𝜇, 𝜎2), then

𝑍 − 𝜇
𝜎 ∼ 𝒩(0, 1).

The CDF of 𝑍 is 𝑃(𝑍 ≤ 𝑎) = Φ((𝑎 − 𝜇)/𝜎).
A normally distributed random variable 𝑍 has skew(𝑍) = 0 and kurt(𝑍) = 3.
Linear combinations of normally distributed variables are normal: If 𝑌1, … , 𝑌𝑛 are jointly
normally distributed and 𝑐1, … , 𝑐𝑛 ∈ ℝ, then ∑𝑛

𝑗=1 𝑐𝑗𝑌𝑗 is normally distributed.
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Multivariate Normal distribution

Let 𝑍1, … , 𝑍𝑘 be independent 𝒩(0, 1) random variables.

Then, the 𝑘-vector 𝑍𝑍𝑍 = (𝑍1, … , 𝑍𝑘)′ has the multivariate standard normal distribution,
written 𝑍𝑍𝑍 ∼ 𝒩(000,𝐼𝐼𝐼𝑘). Its joint PDF is

𝑓(𝑥𝑥𝑥) = 1
(2𝜋)𝑘/2 exp(−𝑥𝑥𝑥′𝑥𝑥𝑥

2 ) .

If 𝑍𝑍𝑍 ∼ 𝒩(000,𝐼𝐼𝐼𝑘) and 𝑍𝑍𝑍∗ = 𝜇𝜇𝜇 + 𝐵𝐵𝐵𝑍𝑍𝑍 for a 𝑞 × 1 vector 𝜇𝜇𝜇 and a 𝑞 × 𝑘 matrix 𝐵𝐵𝐵, then 𝑍𝑍𝑍∗ has
a multivariate normal distribution with mean vector 𝜇𝜇𝜇 and covariance matrix ΣΣΣ = 𝐵𝐵𝐵𝐵𝐵𝐵′,
written 𝑍𝑍𝑍∗ ∼ 𝒩(𝜇𝜇𝜇,ΣΣΣ).
The 𝑞-variate PDF of 𝑍𝑍𝑍∗ is

𝑓(𝑢𝑢𝑢) = 1
(2𝜋)𝑞/2(det(ΣΣΣ))1/2 exp( − 1

2(𝑢𝑢𝑢 − 𝜇𝜇𝜇)′ΣΣΣ−1(𝑢𝑢𝑢 − 𝜇𝜇𝜇)).

The mean vector and covariance matrix are

𝐸[𝑍𝑍𝑍∗] = 𝜇𝜇𝜇, Var(𝑍𝑍𝑍∗) = ΣΣΣ.

The 3D plot below shows the bivariate normal PDF with parameters

𝜇𝜇𝜇 = (0
0) , ΣΣΣ = ( 1 0.8

0.8 1 ) .
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7.5 Gaussian Regression Model

The Gaussian regression model builds on the linear regression framework by adding a
distributional assumption in addition to the i.i.d. and exogeneity assumptions.

It assumes that the error terms are homoskedastic and conditionally normally distributed:

𝑢𝑖|𝑋𝑋𝑋𝑖 ∼ 𝒩(0, 𝜎2) (7.1)

That is, conditional on the regressors, the error has mean zero (exogeneity), constant variance
(homoskedasticity), and a normal distribution.

Because 𝑢𝑖 = 𝑌𝑖 − 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽, Equation 7.1 is equivalent to

𝑌𝑖|𝑋𝑋𝑋𝑖 ∼ 𝒩(𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽, 𝜎2).

Thus, the normality assumption is a distributional assumption about the dependent variable
𝑌𝑖, not the regressors 𝑋𝑋𝑋𝑖.

Because ̂𝛽𝛽𝛽 is a linear combination of the independent and normally distributed variables
𝑌1, … , 𝑌𝑛, the OLS estimator is also normally distributed:

̂𝛽𝛽𝛽|𝑋𝑋𝑋 ∼ 𝒩(𝛽𝛽𝛽,Var( ̂𝛽𝛽𝛽|𝑋𝑋𝑋)).

The variance of the 𝑗-th OLS coefficient ̂𝛽𝑗 is the 𝑗-th diagonal element of the covariance
matrix. Under homoskedasticity, its conditional standard deviation is

sd( ̂𝛽𝑗|𝑋𝑋𝑋) = √(Var( ̂𝛽𝛽𝛽|𝑋𝑋𝑋))𝑗𝑗 = 𝜎√((𝑋𝑋𝑋′𝑋𝑋𝑋)−1)𝑗𝑗.

Subtracting the mean 𝐸[ ̂𝛽𝑗] = 𝛽𝑗 and dividing by the sd( ̂𝛽𝛽𝛽|𝑋𝑋𝑋) gives the standardized OLS
coefficient, which has mean zero and variance 1:

𝑍𝑗 ∶=
̂𝛽𝑗 − 𝛽𝑗

sd( ̂𝛽𝑗|𝑋𝑋𝑋)
∼ 𝒩(0, 1)

7.6 Classical Standard Errors

The conditional standard deviation sd( ̂𝛽𝑗|𝑋𝑋𝑋) in the Gaussian regression model is unknown
because the population error variance 𝜎2 is unknown:

sd( ̂𝛽𝑗|𝑋𝑋𝑋) = 𝜎√((𝑋𝑋𝑋′𝑋𝑋𝑋)−1)𝑗𝑗.
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A standard error of ̂𝛽𝑗 is an estimator of the conditional standard deviation. To construct
a valid standard error under this setup, we can use the adjusted residual variance to estimate
𝜎2:

𝑠2
𝑢̂ = 1

𝑛 − 𝑘
𝑛

∑
𝑖=1

𝑢̂2
𝑖 .

The classical standard error (valid under homoskedasticity) is defined as:

seℎ𝑜𝑚( ̂𝛽𝑗) = 𝑠𝑢̂√(𝑋𝑋𝑋′𝑋𝑋𝑋)−1
𝑗𝑗 .

To estimate the full sampling covariance matrix 𝑉𝑉𝑉 = Var( ̂𝛽𝛽𝛽 ∣ 𝑋𝑋𝑋), the classical covariance
matrix estimator is:

𝑉𝑉𝑉 ℎ𝑜𝑚 = 𝑠2
𝑢̂(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

## classical homoskedastic covariance matrix estimator:
vcov(fit)

(Intercept) education female
(Intercept) 0.18825476 -0.0127486354 -0.0089269796
education -0.01274864 0.0009225111 -0.0002278021
female -0.00892698 -0.0002278021 0.0284200217

Classical standard errors seℎ𝑜𝑚( ̂𝛽𝑗) are the square roots of the diagonal entries:

## classical standard errors:
sqrt(diag(vcov(fit)))

(Intercept) education female
0.43388334 0.03037287 0.16858239

They are also displayed in parentheses in a typical regression summary table:

library(modelsummary)
modelsummary(fit, gof_map = "none")
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(1)
(Intercept) −14.082

(0.434)
education 2.958

(0.030)
female −7.533

(0.169)

7.7 Distributions from Normal Samples

Chi-squared distribution

Let 𝑍1, … , 𝑍𝑚 be independent 𝒩(0, 1) random variables. Then, the random variable

𝑌 =
𝑚

∑
𝑖=1

𝑍2
𝑖

is chi-squared distributed with parameter 𝑚, written 𝑌 ∼ 𝜒2
𝑚.

The parameter 𝑚 is called the degrees of freedom.
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Figure 7.1: PDF of the 𝜒2-distribution

Under the Gaussian assumption Equation 7.1, 𝑠2
𝑢̂ has the following property:

(𝑛 − 𝑘)𝑠2
𝑢̂

𝜎2 ∼ 𝜒2
𝑛−𝑘. (7.2)

105



Student t-distribution

If 𝑍 ∼ 𝒩(0, 1) and 𝑄 ∼ 𝜒2
𝑚, and 𝑍 and 𝑄 are independent, then

𝑌 = 𝑍
√𝑄/𝑚

is 𝑡-distributed with 𝑚 degrees of freedom, written 𝑌 ∼ 𝑡𝑚.
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Figure 7.2: PDFs of the Student 𝑡-distribution

Under the Gaussian assumption Equation 7.1, the standardized OLS coefficient is standard
normal.

When we replace the population standard deviation with its sample estimate (the standard
error) then the standardized OLS coefficient has a t-distribution:

𝑇𝑗 ∶=
̂𝛽𝑗 − 𝛽𝑗

seℎ𝑜𝑚( ̂𝛽𝑗)
=

̂𝛽𝑗 − 𝛽𝑗

sd( ̂𝛽𝑗|𝑋𝑋𝑋)
⋅ 𝜎

𝑠𝑢̂
= 𝑍𝑗 ⋅ 𝜎

𝑠𝑢̂

with
𝑇𝑗 ∼ 𝒩(0, 1)

√𝜒2
𝑛−𝑘/(𝑛 − 𝑘)

= 𝑡𝑛−𝑘. (7.3)

This means that the OLS coefficient standardized with the homoskedastic standard error in-
stead of the standard deviation follows a 𝑡-distribution with 𝑛 − 𝑘 degrees of freedom.

Here, we used Equation 7.2 and the fact ̂𝛽𝛽𝛽 and 𝑠2
𝑢̂ are independent.

Like 𝒩(0, 1), the t-distribution is symmetric around zero:

𝑃(𝑇𝑗 > 𝑎) = 𝑃(𝑇𝑗 < −𝑎).
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The t-distribution has heavier tails than the standard normal distribution.

The 𝑡𝑚 distribution approaches 𝒩(0, 1) as 𝑚 → ∞.

7.8 Exact Confidence Intervals

A confidence interval is a range of values that is likely to contain the true population parameter
with a specified confidence level or coverage probability, often expressed as a percentage
(e.g., 95%).

A (1 − 𝛼) confidence interval for 𝛽𝑗 is an interval 𝐼1−𝛼 such that

𝑃(𝛽𝑗 ∈ 𝐼1−𝛼) = 1 − 𝛼, (7.4)

or, equivalently,
𝑃(𝛽𝑗 ∉ 𝐼1−𝛼) = 𝛼.

To construct such an interval, we use the form

𝐼1−𝛼 = [ ̂𝛽𝑗 − 𝑞 ⋅ seℎ𝑜𝑚( ̂𝛽𝑗); ̂𝛽𝑗 + 𝑞 ⋅ seℎ𝑜𝑚( ̂𝛽𝑗)].
To find the suitable value 𝑞, note that, by Equation 7.3,

𝑃(𝛽𝑗 ∈ 𝐼1−𝛼) = 𝑃( ̂𝛽𝑗 − 𝑞 ⋅ seℎ𝑜𝑚( ̂𝛽𝑗) ≤ 𝛽𝑗 ≤ ̂𝛽𝑗 + 𝑞 ⋅ seℎ𝑜𝑚( ̂𝛽𝑗))

= 𝑃( − 𝑞 ⋅ seℎ𝑜𝑚( ̂𝛽𝑗) ≤ 𝛽𝑗 − ̂𝛽𝑗 ≤ 𝑞 ⋅ seℎ𝑜𝑚( ̂𝛽𝑗))

= 𝑃( − 𝑞 ⋅ seℎ𝑜𝑚( ̂𝛽𝑗) ≤ ̂𝛽𝑗 − 𝛽𝑗 ≤ 𝑞 ⋅ seℎ𝑜𝑚( ̂𝛽𝑗))

= 𝑃( − 𝑞 ≤
̂𝛽𝑗 − 𝛽𝑗

seℎ𝑜𝑚( ̂𝛽𝑗)
≤ 𝑞)

= 𝑃(|𝑇𝑗| ≤ 𝑞),
or, equivalently,

𝑃(𝛽𝑗 ∉ 𝐼1−𝛼) = 𝑃(|𝑇𝑗| > 𝑞).
By the symmetry of the t-distribution,

𝑃(|𝑇𝑗| > 𝑞) = 𝑃(𝑇𝑗 > 𝑞) + 𝑃(𝑇𝑗 < −𝑞) = 2𝑃(𝑇𝑗 > 𝑞).
Therefore, Equation 7.4 is equivalent to

𝑃(𝛽𝑗 ∉ 𝐼1−𝛼) = 𝛼
⇔ 𝑃(|𝑇𝑗| > 𝑞) = 𝛼
⇔ 2𝑃(𝑇𝑗 > 𝑞) = 𝛼
⇔ 𝑃(𝑇𝑗 > 𝑞) = 𝛼/2
⇔ 𝑃(𝑇𝑗 ≤ 𝑞) = 1 − 𝛼/2.
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The last condition means that 𝑞 must be the 1 − 𝛼/2 quantile of the distribution of 𝑇𝑗, which
is the 𝑡𝑛−𝑘-distribution.

We write
𝑞 = 𝑡𝑛−𝑘,1−𝛼/2.

Hence, under the Gaussian regression model,

𝑃(𝛽𝑗 ∈ [ ̂𝛽𝑗 − 𝑡𝑛−𝑘,1−𝛼/2 ⋅ seℎ𝑜𝑚( ̂𝛽𝑗); ̂𝛽𝑗 + 𝑡𝑛−𝑘,1−𝛼/2 ⋅ seℎ𝑜𝑚( ̂𝛽𝑗)]) = 1 − 𝛼.

Table 7.1: Student’s 𝑡-distribution quantiles

df 0.95 0.975 0.995 0.9995
1 6.31 12.71 63.66 636.6
2 2.92 4.30 9.92 31.6
3 2.35 3.18 5.84 12.9
5 2.02 2.57 4.03 6.87
10 1.81 2.23 3.17 4.95
20 1.72 2.09 2.85 3.85
50 1.68 2.01 2.68 3.50
100 1.66 1.98 2.63 3.39
→ ∞ 1.64 1.96 2.58 3.29

The last row (indicated by → ∞) shows the quantiles of the standard normal distribution
𝒩(0, 1).
You can display 95% confidence intervals in the modelsummary output using the conf.int
argument:

modelsummary(fit, gof_map = "none", statistic = "conf.int")
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(1)
(Intercept) −14.082

[−14.932, −13.231]
education 2.958

[2.899, 3.018]
female −7.533

[−7.863, −7.203]

7.9 Confidence Interval Interpretation

Note: the confidence interval is random, while the parameter 𝛽𝑗 is fixed but unknown.

A correct interpretation of a 95% confidence interval is:

• If we were to repeatedly draw samples and construct a 95% confidence interval from each
sample, about 95% of these intervals would contain the true parameter.

Common misinterpretations to avoid:

• � “There is a 95% probability that the true value lies in this interval.”
• � “We are 95% confident this interval contains the true parameter.”
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These mistakes incorrectly treat the parameter as random and the interval as fixed. In reality,
it’s the other way around.

A 95% confidence interval should be understood as a coverage probability: Before observing
the data, there is a 95% probability that the random interval will cover the true parameter.

A helpful visualization:

https://rpsychologist.com/d3/ci/

7.10 Limitations of the Gaussian Approach

The Gaussian regression framework assumes:

• Exogeneity: 𝐸[𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖] = 0
• i.i.d. sample: (𝑌𝑖,𝑋𝑋𝑋′

𝑖), 𝑖 = 1, … , 𝑛
• Homoskedastic, normally distributed errors: 𝑢𝑖|𝑋𝑋𝑋𝑖 ∼ 𝒩(0, 𝜎2)
• Full rank 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖]

While mathematically convenient, these assumptions are often violated in practice. In partic-
ular, the normality assumption implies homoskedasticity and that the conditional distribution
of 𝑌𝑖 given 𝑋𝑋𝑋𝑖 is normal, which is an unrealistic scenario in many economic applications.

Historically, homoskedasticity has been treated as the “default” assumption and heteroskedas-
ticity as a special case. But in empirical work, heteroskedasticity is the norm.

A plot of the absolute value of the residuals against the fitted values shows that individuals
with predicted wages around 10 USD exhibit residuals with lower variance compared to those
with higher predicted wage levels. Hence, the homoskedasticity assumption is implausible:

# Plot of absolute residuals against fitted values
plot(abs(residuals(fit)) ~ fitted(fit), xlab="Fitted values", ylab="|Residuals|")
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The Q-Q-plot is a graphical tool to help us assess if the errors are conditionally normally
distributed.

Let 𝑢̂(𝑖) be the sorted residuals (i.e. 𝑢̂(1) ≤ … ≤ 𝑢̂(𝑛)). The Q-Q-plot plots the sorted residuals
𝑢̂(𝑖) against the ((𝑖 − 0.5)/𝑛)-quantiles of the standard normal distribution.

If the residuals line up well on the straight dashed line, there is an indication that the distri-
bution of the residuals is close to a normal distribution.

set.seed(123)
par(mfrow = c(1,2))
## auxiliary regression with simulated normal errors:
fit.aux = lm(rnorm(500) ~ 1)
## Q-Q-plot of the residuals of the auxiliary regression:
qqnorm(residuals(fit.aux))
qqline(residuals(fit.aux))
## Q-Q-plot of the residuals of the wage regression:
qqnorm(residuals(fit))
qqline(residuals(fit))
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In the left plot you see the Q-Q-plot for an example with simulated normally distributed errors,
where the Gaussian regression assumption is satisfied.

The right plot indicates that, in our regression of wage on education and female, the normality
assumption is implausible.

7.11 Central Limit Theorem

Normality is a strong assumption and fails in many practical applications.

Without normality, it is not possible to construct exact confidence intervals for regression
coefficients in general.

Instead, we typically rely on asymptotic arguments. The theoretical justification for these
arguments is built upon the central limit theorem.

Convergence in distribution

Let 𝑉𝑉𝑉 𝑛 be a sequence of 𝑘-variate random variables and let 𝑉𝑉𝑉 be a 𝑘-variate random variable

𝑉𝑉𝑉 𝑛 converges in distribution to 𝑉𝑉𝑉 , written 𝑉𝑉𝑉 𝑛
𝑑→ 𝑉𝑉𝑉 , if

lim
𝑛→∞

𝑃(𝑉𝑉𝑉 𝑛 ≤ 𝑎𝑎𝑎) = 𝑃(𝑉𝑉𝑉 ≤ 𝑎𝑎𝑎)

for all 𝑎𝑎𝑎 at which the CDF of 𝑉𝑉𝑉 is continuous, where “≤” is componentwise.

If 𝑉𝑉𝑉 has the distribution 𝒩(𝜇𝜇𝜇,ΣΣΣ), we write 𝑉𝑉𝑉 𝑛
𝑑→ 𝒩(𝜇𝜇𝜇,ΣΣΣ).

By the univariate central limit theorem, the sample mean converges to a normal distribution:
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Central Limit Theorem (CLT)

Let 𝑊1, … , 𝑊𝑛 be an i.i.d. sample with 𝐸[𝑊𝑖] = 𝜇 and Var(𝑊𝑖) = 𝜎2 < ∞. Then, the sample
mean 𝑊 = 1

𝑛 ∑𝑛
𝑖=1 𝑊𝑖 satisfies

√𝑛(𝑊 − 𝜇) 𝑑⟶ 𝒩(0, 𝜎2).

Below, you will find an interactive shiny app for the central limit theorem:

SHINY APP: CLT

The same result can be extended to random vectors.

Multivariate Central Limit Theorem (MCLT)

If 𝑊𝑊𝑊 1, … ,𝑊𝑊𝑊 𝑛 is a multivariate i.i.d. sample with 𝐸[𝑊𝑊𝑊 𝑖] = 𝜇𝜇𝜇 and Var(𝑊𝑊𝑊 𝑖) = ΣΣΣ < ∞. Then,
the sample mean vector 𝑊𝑊𝑊 = 1

𝑛 ∑𝑛
𝑖=1 𝑊𝑊𝑊 𝑖 satisfies

√𝑛(𝑊𝑊𝑊 − 𝜇𝜇𝜇) 𝑑→ 𝒩(000,ΣΣΣ)

(see, e.g., Stock and Watson Section 19.2).

7.12 Asymptotic Normality of OLS

Let’s apply the MCLT to the OLS vector. Consider 𝑊𝑊𝑊 𝑖 = 𝑋𝑋𝑋𝑖𝑢𝑖, which satisfies

𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 000, Var(𝑋𝑋𝑋𝑖𝑢𝑖) = 𝐸[𝑢2
𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖] = ΩΩΩ.

Therefore, by the MCLT,
√𝑛( 1

𝑛
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑢𝑖)
𝑑→ 𝒩(000,ΩΩΩ).

By the law of large numbers,

1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖

𝑝
→ 𝑄𝑄𝑄 = 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖].

Combining these two results:

√𝑛( ̂𝛽𝛽𝛽 − 𝛽𝛽𝛽) = ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1

⏟⏟⏟⏟⏟⏟⏟
𝑝
→𝑄𝑄𝑄−1

√𝑛( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑢𝑖)
⏟⏟⏟⏟⏟⏟⏟

𝑑→𝒩(000,ΩΩΩ)

.
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If 𝑍𝑍𝑍 ∼ 𝒩(000,ΩΩΩ), then 𝑄𝑄𝑄−1𝑍𝑍𝑍 has variance

Var(𝑄𝑄𝑄−1𝑍𝑍𝑍) = 𝑄𝑄𝑄−1Var(𝑍𝑍𝑍)𝑄𝑄𝑄−1 = 𝑄𝑄𝑄−1ΩΩΩ𝑄𝑄𝑄−1.

Hence,
√𝑛( ̂𝛽𝛽𝛽 − 𝛽𝛽𝛽) 𝑑→ 𝒩(000,𝑄𝑄𝑄−1ΩΩΩ𝑄𝑄𝑄−1).

Central Limit Theorem for OLS in the heteroskedastic linear model

Consider the linear model 𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖 such that

1) Random sampling: (𝑌𝑖,𝑋𝑋𝑋′
𝑖) are i.i.d.

2) Exogeneity (mean independence): 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0.
3) Finite fourth moments: 𝐸[𝑋4

𝑖𝑗] < ∞ and 𝐸[𝑢4
𝑖 ] < ∞.

4) Full rank: 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖] is positive definite (hence invertible).

Then, as 𝑛 → ∞,

√𝑛( ̂𝛽𝛽𝛽 − 𝛽𝛽𝛽) 𝑑→ 𝒩(000,𝑄𝑄𝑄−1ΩΩΩ𝑄𝑄𝑄−1).

The only additional assumption compared to the consistency of OLS is the finite fourth mo-
ments condition instead of the finite second moments condition. This technical assumption
ensures that the variance of 𝑋𝑋𝑋𝑖𝑢𝑖 is finite.

Specifically, the Cauchy-Schwarz inequality implies that

𝐸[𝑋2
𝑖𝑗𝑢2

𝑖 ] ≤ √𝐸[𝑋4
𝑖𝑗]𝐸[𝑢4

𝑖 ] < ∞,

so that the elements of ΩΩΩ are finite.

If homoskedasticity holds, then ΩΩΩ = 𝜎2𝑄𝑄𝑄, and the asymptotic variance simplifies to
𝑄𝑄𝑄−1ΩΩΩ𝑄𝑄𝑄−1 = 𝜎2𝑄𝑄𝑄−1.

7.13 Robust standard errors

Unlike in the Gaussian case, the standardized OLS coefficient does not follow a standard
normal distribution in finite samples:

̂𝛽𝑗 − 𝛽𝑗

𝑠𝑑( ̂𝛽𝑗 ∣ 𝑋𝑋𝑋)
≁ 𝒩(0, 1).

However, for large samples, the central limit theorem guarantees that the OLS estimator is
asymptotically normal.
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Asymptotic standard deviation:
√𝑛 sd( ̂𝛽𝑗|𝑋𝑋𝑋)

=
√√
⎷

[( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1
( 1

𝑛
𝑛

∑
𝑖=1

𝜎2
𝑖 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖)( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1
]

𝑗𝑗
𝑝

→ √[𝑄𝑄𝑄−1ΩΩΩ𝑄𝑄𝑄−1]𝑗𝑗

Asymptotic distribution:
√𝑛( ̂𝛽𝑗 − 𝛽𝑗)

𝑑→ 𝒩(0, [𝑄𝑄𝑄−1ΩΩΩ𝑄𝑄𝑄−1]𝑗𝑗).
So, the standardized coefficients satisfy

̂𝛽𝑗 − 𝛽𝑗

sd( ̂𝛽𝑗|𝑋𝑋𝑋)
=

√𝑛( ̂𝛽𝑗 − 𝛽𝑗)√𝑛 sd( ̂𝛽𝑗|𝑋𝑋𝑋)
𝑑→ 𝒩(0, 1).

As in the Gaussian case, we can replace the unknown conditional standard deviation by a
suitable standard error.

The critical terms in the conditional standard deviation are the unobserved conditional error
variances

𝜎2
𝑖 = Var(𝑢𝑖|𝑋𝑋𝑋𝑖).

We replace the unobserved 𝜎2
𝑖 with the squared OLS residuals:

𝑢̂2
𝑖 = (𝑌𝑖 − 𝑋𝑋𝑋′

𝑖 ̂𝛽𝛽𝛽)2.

This yields a consistent estimator of ΩΩΩ:

Ω̂ΩΩ = 1
𝑛

𝑛
∑
𝑖=1

𝑢̂2
𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖.

Substituting into the asymptotic variance formula, we obtain the heteroskedasticity-
consistent covariance matrix estimator, also known as the White estimator (White,
1980):

White (HC0) Estimator

𝑉𝑉𝑉 ℎ𝑐0 = (
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1
(

𝑛
∑
𝑖=1

𝑢̂2
𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖)(
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1

The HC0 standard error for the 𝑗-th coefficient is the square root of the 𝑗-th diagonal entry:

seℎ𝑐0( ̂𝛽𝑗) = √[𝑉𝑉𝑉 ℎ𝑐0]𝑗𝑗

This estimator remains consistent for Var( ̂𝛽𝛽𝛽|𝑋𝑋𝑋) even if the errors are heteroskedastic. However,
it can be biased downward in small samples.
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HC1 Correction

To reduce small-sample bias, MacKinnon and White (1985) proposed the HC1 correction,
which rescales the estimator using a degrees-of-freedom adjustment:

𝑉𝑉𝑉 ℎ𝑐1 = 𝑛
𝑛 − 𝑘 ⋅ (

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1
(

𝑛
∑
𝑖=1

𝑢̂2
𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖)(
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1
.

The HC1 standard error for the 𝑗-th coefficient is then:

seℎ𝑐1( ̂𝛽𝑗) = √[𝑉𝑉𝑉 ℎ𝑐1]𝑗𝑗.

These standard errors are widely used in applied work because they are valid under general
forms of heteroskedasticity and easy to compute. Most statistical software (including R and
Stata) uses HC1 by default when robust inference is requested.

HC3 Correction

Recall that an observation 𝑖 with a high leverage value ℎ𝑖𝑖 can distort the estimation of a linear
model. Their presence might have a particularly large influence on the estimation of ΩΩΩ.

An alternative way to construct robust standard errors is to weight the observations by the
leverage values:

Ω̂ΩΩjack = 1
𝑛

𝑛
∑
𝑖=1

𝑢̂2
𝑖

(1 − ℎ𝑖𝑖)2𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖.

Observations with high leverage values have a small denominator (1 − ℎ𝑖𝑖)2. Dividing by
that amplifies their residuals in Ω̂ΩΩ, which tends to produce larger standard errors to prevent
underestimation of variance driven by leverage.

and are therefore downweighted, which makes this estimator more robust to the influence of
leverage points.

The full HC3 covariance matrix estimator is:

𝑉𝑉𝑉 jack = 𝑉𝑉𝑉 hc3 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1 Ω̂ΩΩjack (𝑋𝑋𝑋′𝑋𝑋𝑋)−1 .

There is also the HC2 estimator, which uses 𝑢̂2
𝑖 /(1 − ℎ𝑖𝑖) instead of 𝑢̂2

𝑖 /(1 − ℎ𝑖𝑖)2, but this is
less common.
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The HC3 standard errors are:
𝑠𝑒ℎ𝑐3( ̂𝛽𝑗) = √[𝑉𝑉𝑉 ℎ𝑐3]𝑗𝑗.

If you have a small sample size and you are worried about high leverage points, you should
use the HC3 standard errors instead of the HC1 standard errors.

The HC3 standard error is also called jackknife standard error because it is based on the
leave-one-out principle, similar to the way a jackknife is used to cut something. The idea is to
“cut” the data by removing one observation at a time and then re-estimating the model.

Let ̂𝛽𝛽𝛽−𝑖 be the OLS estimator when using all observations except those from individual 𝑖. The
difference of the full sample and the jackknife estimator is

̂𝛽𝛽𝛽(−𝑖) − ̂𝛽𝛽𝛽 = (
𝑛

∑
𝑗=1

𝑋𝑋𝑋𝑗𝑋𝑋𝑋′
𝑗)

−1
𝑋𝑋𝑋𝑖

𝑢̂𝑖
1 − ℎ𝑖𝑖

.

The impact of cutting the 𝑖-th observation is proportional to 𝑢̂𝑖/(1 − ℎ𝑖𝑖). Then, the HC3
covariance matrix can also be defined as:

𝑛
∑
𝑖=1

( ̂𝛽𝛽𝛽(−𝑖) − ̂𝛽𝛽𝛽)( ̂𝛽𝛽𝛽(−𝑖) − ̂𝛽𝛽𝛽)′ = (
𝑛

∑
𝑗=1

𝑋𝑋𝑋𝑗𝑋𝑋𝑋′
𝑗)

−1 𝑛
∑
𝑖=1

𝑢̂2
𝑖

(1 − ℎ𝑖𝑖)2𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖(

𝑛
∑
𝑗=1

𝑋𝑋𝑋𝑗𝑋𝑋𝑋′
𝑗)

−1
.

7.14 Robust Confidence Intervals

Using heteroskedasticity-robust standard errors, we can construct confidence intervals that
remain valid under heteroskedasticity.

For large samples, a (1 − 𝛼) confidence interval for 𝛽𝑗 is:

𝐼1−𝛼 = [ ̂𝛽𝑗 ± 𝑧1−𝛼/2 ⋅ 𝑠𝑒ℎ𝑐1( ̂𝛽𝑗)] ,

where 𝑧1−𝛼/2 is the standard normal critical value (e.g., 𝑧0.975 = 1.96 for a 95% interval).

For moderate sample sizes, using a 𝑡-distribution with 𝑛 − 𝑘 degrees of freedom gives better
finite-sample performance:

𝐼1−𝛼 = [ ̂𝛽𝑗 ± 𝑡𝑛−𝑘,1−𝛼/2 ⋅ 𝑠𝑒ℎ𝑐1( ̂𝛽𝑗)] .

These robust intervals satisfy the asymptotic coverage property:

lim
𝑛→∞

𝑃(𝛽𝑗 ∈ 𝐼1−𝛼) = 1 − 𝛼.
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(1) (2) (3)
(Intercept) −14.082 −14.082 −14.082

(0.434) (0.500) (0.500)
education 2.958 2.958 2.958

(0.030) (0.040) (0.040)
female −7.533 −7.533 −7.533

(0.169) (0.162) (0.162)
Num.Obs. 50 742 50 742 50 742
R2 0.180 0.180 0.180
RMSE 18.76 18.76 18.76
Std.Errors IID HC1 HC3

Why software uses 𝑡-quantiles:

There’s no exact finite-sample justification under generic heteroskedasticity. Asymptoti-
cally, both 𝑡𝑛−𝑘 quantiles and standard normal quantiles are valid. Most software uses
𝑡-quantiles by default to match the homoskedastic case and improve finite-sample perfor-
mance. For large samples, this makes little difference, as 𝑡-quantiles converge to standard
normal quantiles as degrees of freedom grow large.

The vcov argument of the modelsummary() function allows you to specify the type of covari-
ance matrix estimator to use.

## Standard error comparison:
fit = lm(wage ~ education + female, data = cps)
modelsummary(fit,

vcov = list("IID", "HC1", "HC3"),
gof_map = c("nobs", "r.squared", "rmse", "vcov.type"))

The homoskedasticity-only standard errors (called IID in R) differ from the robust standard
errors. The HC1 and HC3 standard errors coincide up to 3 digits after the decimal point in
this example.

In practice you should always use HC1 or HC3 standard errors unless you have very good
reasons to believe that the Gaussianity and homoskedasticity assumption hold.

data(CASchools, package = "AER")
CASchools$STR = CASchools$students/CASchools$teachers
CASchools$score = (CASchools$read+CASchools$math)/2
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(1) (2) (3)
(Intercept) 686.032 686.032 686.032

(7.411) (8.728) (8.812)
STR −1.101 −1.101 −1.101

(0.380) (0.433) (0.437)
english −0.650 −0.650 −0.650

(0.039) (0.031) (0.031)
Num.Obs. 420 420 420
R2 0.426 0.426 0.426
RMSE 14.41 14.41 14.41
Std.Errors IID HC1 HC3

fit.CASchools = lm(score ~ STR + english, data = CASchools)
## Standard error comparison:
modelsummary(fit.CASchools,

vcov = list("IID", "HC1", "HC3"),
gof_map = c("nobs", "r.squared", "rmse", "vcov.type"))

Here, HC1 and HC3 standard errors differ slightly. You can also display the confidence interval
directly:

## Confidence interval comparison:
modelsummary(fit.CASchools,

vcov = list("IID", "HC1", "HC3"),
statistic = "conf.int",
gof_map = c("nobs", "r.squared", "rmse", "vcov.type"))

7.15 Summary

• Under i.i.d. sampling, exogeneity, finite second moments, and full rank design matrix,
OLS is consistent

• In addition, under finite fourth moments, OLS is asymptotically normal
• Under homoskedastic errors, confidence intervals with classical standard errors are

asymptotically valid
• Under homoskedastic and normally distributed errors, confidence intervals with classical

standard errors are exactly valid if t-quantiles are used
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(1) (2) (3)
(Intercept) 686.032 686.032 686.032

[671.464, 700.600] [668.875, 703.189] [668.710, 703.354]
STR −1.101 −1.101 −1.101

[−1.849, −0.354] [−1.952, −0.250] [−1.960, −0.242]
english −0.650 −0.650 −0.650

[−0.727, −0.572] [−0.711, −0.589] [−0.711, −0.588]
Num.Obs. 420 420 420
R2 0.426 0.426 0.426
RMSE 14.41 14.41 14.41
Std.Errors IID HC1 HC3

• Without homoskedasticity, confidence intervals with HC1/HC3 standard errors are
asymptotically valid.

• If i.i.d. sampling does not hold, other standard errors must be used. Under clustered
sampling, use cluster-robust standard errors. For stationary time series, use HAC (het-
eroskedasticity and autocorrelation consistent) standard errors

7.16 R Code

statistics-sec07.R
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8 Testing

In applied regression analysis, we often want to assess whether a regressor has a statistically
significant relationship with the outcome variable (conditional on other regressors).

8.1 t-Test

The most common hypothesis test evaluates whether a regression coefficient equals zero:

𝐻0 ∶ 𝛽𝑗 = 0 vs. 𝐻1 ∶ 𝛽𝑗 ≠ 0.

This corresponds to testing whether the marginal effect of the regressor 𝑋𝑖𝑗 on the outcome
𝑌𝑖 is zero, holding other regressors constant.

We use the t-statistic:

𝑇𝑗 =
̂𝛽𝑗

𝑠𝑒( ̂𝛽𝑗)
,

where 𝑠𝑒( ̂𝛽𝑗) is a standard error.

You may use the classical standard error if you have strong evidence that the errors are
homoskedastic. However, in most economic applications, heteroskedasticity-robust standard
errors are more reliable.

Under the null, 𝑇𝑗 follows approximately a 𝑡𝑛−𝑘 distribution. We reject 𝐻0 at the significance
level 𝛼 if:

|𝑇𝑗| > 𝑡𝑛−𝑘,1−𝛼/2.

This decision rule is equivalent to checking whether the confidence interval for 𝛽𝑗 includes 0:

• Reject 𝐻0 if 0 lies outside the 1 − 𝛼 confidence interval
• Fail to reject (accept) 𝐻0 if 0 lies inside the 1 − 𝛼 confidence interval
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8.2 p-Value

The p-value is a criterion to reach a hypothesis test decision conveniently:

reject 𝐻0 if p-value < 𝛼
do not reject 𝐻0 if p-value ≥ 𝛼

Formally, the p-value represents the probability of observing a test statistic as extreme or more
extreme than the one we computed, assuming 𝐻0 is true. For the t-test, the p-value is:

𝑝-value = 𝑃(|𝑇 | > |𝑇𝑗| ∣ 𝐻0 is true)
Here, 𝑇 is a random variable following the null distribution 𝑍 ∼ 𝑡𝑛−𝑘, and 𝑇𝑗 is the observed
value of the test statistic.

Another way of representing the p-values of a t-test is:

𝑝-value = 2(1 − 𝐹𝑡𝑛−𝑘
(|𝑇𝑗|)),

where 𝐹𝑡𝑛−𝑘
is the cumulative distribution function (CDF) of the 𝑡𝑛−𝑘-distribution.

A common misinterpretation of p-values is treating them as the probability that the null
hypothesis is being true. This is incorrect. The p-value is not a statement about the probability
of the null hypothesis itself.
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The correct interpretation is that the p-value represents the probability of observing a test
statistic at least as extreme as the one calculated from our sample, assuming that the null
hypothesis is true.

In other words, a p-value of 0.04 means:

• � NOT “There’s a 4% chance that the null hypothesis is true”
• � INSTEAD “If the null hypothesis were true, there would be a 4% chance of observing

a test statistic this extreme or more extreme”

Small p-values indicate that the observed data would be unlikely under the null hypothesis,
which leads us to reject the null in favor of the alternative. However, they do not tell us
the probability that our alternative hypothesis is correct, nor do they directly measure the
magnitude or significance of the marginal effect.

Relation to Confidence Intervals:

Zero lies outside the (1−𝛼) confidence interval for 𝛽𝑗 if and only if the p-value for testing
𝐻0 ∶ 𝛽𝑗 = 0 is less than 𝛼.

8.3 Significance Stars

Regression tables often use asterisks to indicate levels of statistical significance. Stars summa-
rize statistical significance by comparing the t-statistic to critical values (or equivalently, the
p-value or whether 0 is covered by the confidence interval)

The convention within R is:

Stars p-value t-statistic Confidence interval
*** 𝑝 < 0.001 |𝑇𝑗| > 𝑡𝑛−𝑘,0.995 0 outside 𝐼0.999
** 0.001 ≤ 𝑝 < 0.01 𝑡𝑛−𝑘,0.995 ≥ |𝑇𝑗| >

𝑡𝑛−𝑘,0.975

0 outside 𝐼0.99, but inside 𝐼0.999

* 0.01 ≤ 𝑝 < 0.05 𝑡𝑛−𝑘,0.975 ≥ |𝑇𝑗| > 𝑡𝑛−𝑘,0.95 0 outside 𝐼0.95, but inside 𝐼0.99
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(1) (2)
(Intercept) −14.082*** −14.082***

(0.434) (0.500)
education 2.958*** 2.958***

(0.030) (0.040)
female −7.533*** −7.533***

(0.169) (0.162)
Num.Obs. 50 742 50 742
R2 0.180 0.180
R2 Adj. 0.180 0.180
AIC 441 515.9 441 515.9
BIC 441 542.4 441 542.4
RMSE 18.76 18.76
Std.Errors IID Heteroskedasticity-robust

+ p <0.1, * p <0.05, ** p <0.01, *** p <0.001

Significance Stars Convention

Note that most economists use the following significance levels: *** for 1%, ** for 5%,
and * for 10%. In this lecture, we follow the convention of R, which uses the significance
levels *** for 0.1%, ** for 1%, and * for 5%.

Regression Tables

Let’s revisit the regression of wage on education and female.

library(fixest)
library(modelsummary)
cps = read.csv("cps.csv")
fit.hom = feols(wage ~ education + female, data = cps, vcov = "iid")
fit.het = feols(wage ~ education + female, data = cps, vcov = "hc1")
mymodels = list(fit.hom, fit.het)
modelsummary(mymodels, stars = TRUE)
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To see the exact t-statistics and p-values, you can use the summary() function:

summary(fit.hom)

OLS estimation, Dep. Var.: wage
Observations: 50,742
Standard-errors: IID

Estimate Std. Error t value Pr(>|t|)
(Intercept) -14.08179 0.433883 -32.4552 < 2.2e-16 ***
education 2.95817 0.030373 97.3953 < 2.2e-16 ***
female -7.53307 0.168582 -44.6848 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 18.8 Adj. R2: 0.179696

summary(fit.het)

OLS estimation, Dep. Var.: wage
Observations: 50,742
Standard-errors: Heteroskedasticity-robust

Estimate Std. Error t value Pr(>|t|)
(Intercept) -14.08179 0.500078 -28.1592 < 2.2e-16 ***
education 2.95817 0.040110 73.7512 < 2.2e-16 ***
female -7.53307 0.161644 -46.6027 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 18.8 Adj. R2: 0.179696

All p-values are super small: 2.2e-16 means 2.2 ⋅ 10−16 (15 zeros after the decimal point,
followed by 22).

Let’s also revisit the CASchools dataset and examine four regression models on test scores.

library(AER)
data(CASchools, package = "AER")
CASchools$STR = CASchools$students/CASchools$teachers
CASchools$score = (CASchools$read + CASchools$math)/2

fitA = feols(score ~ STR, data = CASchools)
fitB = feols(score ~ STR + english, data = CASchools)
fitC = feols(score ~ STR + english + lunch, data = CASchools)
fitD = feols(score ~ STR + english + lunch + expenditure, data = CASchools)
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(1) (2) (3) (4)
(Intercept) 698.933*** 686.032*** 700.150*** 665.988***

(9.467) (7.411) (4.686) (9.460)
STR −2.280*** −1.101** −0.998*** −0.235

(0.480) (0.380) (0.239) (0.298)
english −0.650*** −0.122*** −0.128***

(0.039) (0.032) (0.032)
lunch −0.547*** −0.546***

(0.022) (0.021)
expenditure 0.004***

(0.001)
Num.Obs. 420 420 420 420
R2 0.051 0.426 0.775 0.783
R2 Adj. 0.049 0.424 0.773 0.781
AIC 3648.5 3439.1 3049.0 3034.1
BIC 3656.6 3451.2 3065.2 3054.3
RMSE 18.54 14.41 9.04 8.86
Std.Errors IID IID IID IID

+ p <0.1, * p <0.05, ** p <0.01, *** p <0.001

Classical (Homoskedastic) Standard Errors

mymodels = list(fitA, fitB, fitC, fitD)
modelsummary(mymodels, stars = TRUE, vcov = "iid")

Robust (HC1) Standard Errors

mymodels = list(fitA, fitB, fitC, fitD)
modelsummary(mymodels, stars = TRUE, vcov = "HC1")

Interpretation of STR coefficient:
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(1) (2) (3) (4)
(Intercept) 698.933*** 686.032*** 700.150*** 665.988***

(10.364) (8.728) (5.568) (10.377)
STR −2.280*** −1.101* −0.998*** −0.235

(0.519) (0.433) (0.270) (0.325)
english −0.650*** −0.122*** −0.128***

(0.031) (0.033) (0.032)
lunch −0.547*** −0.546***

(0.024) (0.023)
expenditure 0.004***

(0.001)
Num.Obs. 420 420 420 420
R2 0.051 0.426 0.775 0.783
R2 Adj. 0.049 0.424 0.773 0.781
AIC 3648.5 3439.1 3049.0 3034.1
BIC 3656.6 3451.2 3065.2 3054.3
RMSE 18.54 14.41 9.04 8.86
Std.Errors HC1 HC1 HC1 HC1

+ p <0.1, * p <0.05, ** p <0.01, *** p <0.001
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• Models A–C: The coefficient is negative and statistically significant. However, when
using robust standard errors, the coefficient in model B becomes only weakly significant.

• Model D: The coefficient remains negative but becomes insignificant when controlling
for expenditure.

As discussed earlier, expenditure is a bad control in this context and should not be used to
estimate a ceteris paribus effect of class size on test scores.

8.4 Testing for Heteroskedasticity: Breusch-Pagan Test

Classical standard errors should only be used if you have statistical evidence that the errors
are homoskedastic. A statistical test for this is the Breusch-Pagan Test.

Under homoskedasticity, the variance of the error term is constant and does not depend on
the values of the regressors:

𝑉 𝑎𝑟(𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖) = 𝜎2 (constant).

To test this assumption, we perform an auxiliary regression of the squared residuals on the
original regressors:

𝑢̂2
𝑖 = 𝑋𝑋𝑋′

𝑖𝛾𝛾𝛾 + 𝑣𝑖, 𝑖 = 1, … , 𝑛,
where:

• 𝑢̂𝑖 are the OLS residuals from the original model,
• 𝛾𝛾𝛾 are auxiliary coefficients,
• 𝑣𝑖 is the error term in the auxiliary regression.

If homoskedasticity holds, the regressors should not explain any variation in 𝑢̂2
𝑖 , which means

the auxiliary regression should have low explanatory power.

Let 𝑅2
aux be the R-squared from this auxiliary regression. Then, the Breusch–Pagan (BP)

test statistic is:
𝐵𝑃 = 𝑛 ⋅ 𝑅2

aux

Under the null hypothesis of homoskedasticity,

𝐻0 ∶ 𝑉 𝑎𝑟(𝑢𝑖 ∣ 𝑋𝑋𝑋𝑖) = 𝜎2,

the test statistic follows an asymptotic chi-squared distribution with 𝑘−1 degrees of freedom:

𝐵𝑃 𝑑→ 𝜒2
𝑘−1
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We reject 𝐻0 at significance level 𝛼 if:

𝐵𝑃 > 𝜒2
1−𝛼, 𝑘−1.

This basic variant of the BP test is Koenker’s version of the test. Other variants include further
nonlinear transformations of the regressors.

In R, the test is implemented via the bptest() function from the AER package. Unfortunately,
the bptest() function does not work directly with feols objects, so we need to estimate the
model first with lm():

fit = lm(wage ~ education + female, data = cps)
bptest(fit)

studentized Breusch-Pagan test

data: fit
BP = 1070.3, df = 2, p-value < 2.2e-16

In the wage regression the BP test clearly rejects 𝐻0, which is strong statistical evidence that
the errors are heteroskedastic.

Let’s apply the test to the CASchools model:

lm(score ~ STR + english, data = CASchools) |> bptest()

studentized Breusch-Pagan test

data: lm(score ~ STR + english, data = CASchools)
BP = 29.501, df = 2, p-value = 3.926e-07

lm(score ~ STR + english + lunch, data = CASchools) |> bptest()

studentized Breusch-Pagan test

data: lm(score ~ STR + english + lunch, data = CASchools)
BP = 9.9375, df = 3, p-value = 0.0191
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lm(score ~ STR + english + lunch + expenditure, data = CASchools) |> bptest()

studentized Breusch-Pagan test

data: lm(score ~ STR + english + lunch + expenditure, data = CASchools)
BP = 5.9649, df = 4, p-value = 0.2018

In the regression of score on STR and english there is strong statistical evidence that errors
are heteroskedastic, whereas when adding lunch and expenditure there is no evidence of
heteroskedasticity. See the difference in the absolute residuals against fitted values plot:

par(mfrow = c(1,2))
plot(abs(fitB$residuals) ~ fitB$fitted.values)
plot(abs(fitD$residuals) ~ fitD$fitted.values)

610 630 650 670

0
10

20
30

40
50

fitB$fitted.values

ab
s(

fit
B

$r
es

id
ua

ls
)

620 660

0
5

10
20

30

fitD$fitted.values

ab
s(

fit
D

$r
es

id
ua

ls
)

The heteroskedasticity pattern in model (2) likely occurred because of a nonlinear dependence
of the omitted variables lunch and expenditure with the included regressors STR and english.
The inclusion of these variables in model (4) eliminated the heteroskedasticity (apparent het-
eroskedasticity). Therefore, heteroskedasticity is sometimes a sign of model misspecification.
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8.5 Testing for Normality: Jarque–Bera Test

A general property of a normally distributed variable is that it has zero skewness and kurtosis
of three. In the Gaussian regression model, this implies:

𝑢𝑖|𝑋𝑋𝑋𝑖 ∼ 𝒩(0, 𝜎2) ⇒ 𝐸[𝑢3
𝑖 ] = 0, 𝐸[𝑢4

𝑖 ] = 3𝜎4.

The sample skewness and sample kurtosis of the OLS residuals are:

ŝke( ̂𝑢𝑢𝑢) = 1
𝑛𝜎̂3

𝑢̂

𝑛
∑
𝑖=1

𝑢̂3
𝑖 , k̂ur( ̂𝑢𝑢𝑢) = 1

𝑛𝜎̂4
𝑢̂

𝑛
∑
𝑖=1

𝑢̂4
𝑖

A joint test for normality — assessing both skewness and kurtosis — is the Jarque–Bera
(JB) test, with statistic:

𝐽𝐵 = 𝑛 (1
6 ŝke( ̂𝑢𝑢𝑢)2 + 1

24(k̂ur( ̂𝑢𝑢𝑢) − 3)2)

Under the null hypothesis of normal errors, this test statistic is asymptotically chi-squared
distributed:

𝐽𝐵 𝑑→ 𝜒2
2

We reject 𝐻0 at level 𝛼 if:
𝐽𝐵 > 𝜒2

1−𝛼, 2.

In R, we can apply the test using the moments package:

library(moments)
jarque.test(fitD$residuals)

Jarque-Bera Normality Test

data: fitD$residuals
JB = 8.9614, p-value = 0.01133
alternative hypothesis: greater

Although the Breusch–Pagan test does not reject homoskedasticity for fitD (so classical stan-
dard errors are valid asymptotically), the JB rejects the null hypothesis of normal errors at
the 5% level and provides statistical evidence that the errors are not normally distributed.

This means that exact inference based on t-distributions is not valid in finite samples, and
confidence intervals or t-test results give only large sample approximations.

In econometrics, asymptotic large sample approximations have become the convention because
exact finite sample inference is rarely feasible.
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8.6 Joint Hypothesis Testing

So far, we’ve tested whether a single coefficient is zero. But often we want to test multiple
restrictions simultaneously, such as whether a group of variables has a joint effect.

The joint exclusion hypothesis formulates the null hypothesis that a set of coefficients or
linear combinations of coefficients are equal to zero:

𝐻0 ∶ 𝑅𝑅𝑅𝛽𝛽𝛽 = 000

where:

• 𝑅𝑅𝑅 is a 𝑞 × 𝑘 restriction matrix,
• 000 is the 𝑞 × 1 vector of zeros,
• 𝑞 is the number of restrictions.

Consider for example the score on STR regression with interaction effects:

score𝑖 = 𝛽1 + 𝛽2STR𝑖 + 𝛽3HiEL𝑖 + 𝛽4STR𝑖 ⋅ HiEL𝑖 + 𝑢𝑖.

## Create dummy variable for high proportion of English learners
CASchools$HiEL = (CASchools$english >= 10) |> as.numeric()
fitE = feols(score ~ STR + HiEL + STR:HiEL, data = CASchools, vcov = "hc1")
fitE |> summary()

OLS estimation, Dep. Var.: score
Observations: 420
Standard-errors: Heteroskedasticity-robust

Estimate Std. Error t value Pr(>|t|)
(Intercept) 682.245837 11.867815 57.487065 < 2.2e-16 ***
STR -0.968460 0.589102 -1.643961 0.10094
HiEL 5.639135 19.514560 0.288971 0.77275
STR:HiEL -1.276613 0.966920 -1.320289 0.18746
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 15.8 Adj. R2: 0.305368

The model output reveals that none of the individual t-tests reject the null hypothesis that
the individual coefficients are zero.

However, these results are misleading because the true marginal effects are a mixture of these
coefficients:

𝜕𝐸[score𝑖 ∣ 𝑋𝑋𝑋𝑖]
𝜕STR𝑖

= 𝛽2 + 𝛽4 ⋅ HiEL𝑖.
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Therefore, to test if STR has an effect on score, we need to test the joint hypothesis:

𝐻0 ∶ 𝛽2 = 0 and 𝛽4 = 0.

In terms of the multiple restriction notation 𝐻0 ∶ 𝑅𝑅𝑅𝛽𝛽𝛽 = 000, we have

𝑅𝑅𝑅 = (0 1 0 0
0 0 0 1) .

Similarly, the marginal effects of HiEL is:

𝜕𝐸[score𝑖 ∣ 𝑋𝑋𝑋𝑖]
𝜕HiEL𝑖

= 𝛽3 + 𝛽4 ⋅ STR𝑖.

We test the joint hypothesis that 𝛽3 = 0 and 𝛽4 = 0:

𝑅𝑅𝑅 = (0 0 1 0
0 0 0 1) .

Wald Test

The Wald test is based on the Wald distance:

𝑑𝑑𝑑 = 𝑅𝑅𝑅 ̂𝛽𝛽𝛽,
which measures how far the estimated coefficients deviate from the hypothesized restrictions.

The covariance matrix of the Wald distance is: 𝑉 𝑎𝑟(𝑑𝑑𝑑|𝑋𝑋𝑋) = 𝑅𝑅𝑅𝑉 𝑎𝑟( ̂𝛽𝛽𝛽|𝑋𝑋𝑋)𝑅𝑅𝑅′, which can be
estimated as:

𝑉 𝑎𝑟(𝑑𝑑𝑑 ∣ 𝑋𝑋𝑋) = 𝑅𝑅𝑅𝑉𝑉𝑉 𝑅𝑅𝑅′.

The Wald statistic is the squared, variance-standardized distance:

𝑊 = 𝑑𝑑𝑑′(𝑅𝑅𝑅𝑉𝑉𝑉 𝑅𝑅𝑅′)−1𝑑𝑑𝑑,

where 𝑉𝑉𝑉 is a consistent estimator of the covariance matrix of ̂𝛽𝛽𝛽 (e.g., HC1 robust: 𝑉𝑉𝑉 = 𝑉𝑉𝑉 ℎ𝑐1).

Under the null hypothesis, and assuming (A1)–(A4), the Wald statistic has an asymptotic
chi-squared distribution:

𝑊 𝑑→ 𝜒2
𝑞,

where 𝑞 is the number of restrictions.

The null is rejected if 𝑊 > 𝜒2
1−𝛼,𝑞.
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F-test

The Wald test is an asymptotic size-𝛼-test under (A1)–(A4). Even if normality and ho-
moskedasticity hold true as well, the Wald test is still only asymptotically valid, i.e.:

lim
𝑛→∞

𝑃(Wald test rejects 𝐻0|𝐻0 true) = 𝛼.

The F-test is the small sample correction of the Wald test. It is based on the same distance
as the Wald test, but it is scaled by the number of restrictions 𝑞:

𝐹 = 𝑊
𝑞 = 1

𝑞 (𝑅𝑅𝑅 ̂𝛽𝛽𝛽 − 𝑟𝑟𝑟)′(𝑅𝑅𝑅𝑉𝑉𝑉 𝑅𝑅𝑅′)−1(𝑅𝑅𝑅 ̂𝛽𝛽𝛽 − 𝑟𝑟𝑟).

Under the restrictive assumption that the Gaussian regression model holds, and if 𝑉𝑉𝑉 = 𝑉𝑉𝑉 ℎ𝑜𝑚
is used, it can be shown that

𝐹 ∼ 𝐹𝑞;𝑛−𝑘

for any finite sample size 𝑛. Here, 𝐹𝑞;𝑛−𝑘 is the F-distribution with 𝑞 degrees of freedom in
the numerator and 𝑛 − 𝑘 degrees of freedom in the denominator.

The test decision for the F-test:

do not reject 𝐻0 if 𝐹 ≤ 𝐹(1−𝛼,𝑞,𝑛−𝑘),
reject 𝐻0 if 𝐹 > 𝐹(1−𝛼,𝑞,𝑛−𝑘),

where 𝐹(𝑝,𝑚1,𝑚2) is the 𝑝-quantile of the F distribution with 𝑚1 degrees of freedom in the
numerator and 𝑚2 degrees of freedom in the denominator.

F- and Chi-squared distribution

Similar to how the t-distribution 𝑡𝑛−𝑘 approaches the standard normal as sample size
increases, we have 𝑞 ⋅ 𝐹𝑞;𝑛−𝑘 → 𝜒2

𝑞 as 𝑛 → ∞. Therefore, the F-test and Wald test
become asymptotically equivalent and lead to identical statistical conclusions in large
samples. For single constraint (q=1) hypotheses of the form 𝐻0 ∶ 𝛽𝑗 = 0, the F-test is
equivalent to a two-sided t-test.
The F-test can be viewed as a finite-sample correction of the Wald test. It tends to be
more conservative than the Wald test in small samples, meaning that rejection by the
F-test generally implies rejection by the Wald test, but not necessarily vice versa. Due
to this more conservative nature, which helps control false rejections (Type I errors) in
small samples, the F-test is often preferred in practice.
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F-tests in R

The function wald() from the fixest package performs an F-test:

wald(fitE, keep = "STR")

Wald test, H0: joint nullity of STR and STR:HiEL
stat = 5.6381, p-value = 0.003837, on 2 and 416 DoF, VCOV: Heteroskedasticity-robust.

wald(fitE, keep = "HiEL")

Wald test, H0: joint nullity of HiEL and STR:HiEL
stat = 89.9, p-value < 2.2e-16, on 2 and 416 DoF, VCOV: Heteroskedasticity-robust.

The hypotheses that STR and HiEL have no effect on score can be clearly rejected.

Another research question is whether the effect of STR on score is zero only for the subgroup
of schools with a high proportion of English learners (HiEL = 1). In this case, the marginal
effect is:

𝜕𝐸[score𝑖 ∣ 𝑋𝑋𝑋𝑖,HiEL𝑖 = 1]
𝜕STR𝑖

= 𝛽2 + 𝛽4 ⋅ 1,

and the null hypothesis is:
𝐻0 ∶ 𝛽2 + 𝛽4 = 0.

The corresponding restriction matrix is:

𝑅𝑅𝑅 = (0 1 0 1) ,

where the number of restrictions is 𝑞 = 1.
The function linearHypothesis() from the AER package is more flexible for these cases:

## Define hypothesis matrix:
R = matrix(c(0,1,0,1), ncol = 4)
linearHypothesis(fitE, hypothesis.matrix = R, test = "F", vcov. = vcovHC(fitE, type = "HC1"))

Linear hypothesis test:
STR + STR:HiEL = 0

Model 1: restricted model
Model 2: score ~ STR + HiEL + STR:HiEL
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Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 417
2 416 1 8.5736 0.003598 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Similarly, this hypothesis can be rejected at the 0.01 level.

8.7 Jackknife Methods

Projection Matrix

Recall the vector of fitted values 𝑌𝑌𝑌 = 𝑋𝑋𝑋 ̂𝛽𝛽𝛽. Inserting the model equation gives:

𝑌𝑌𝑌 = 𝑋𝑋𝑋 ̂𝛽𝛽𝛽 = 𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′⏟⏟⏟⏟⏟⏟⏟
=𝑃𝑃𝑃

𝑌𝑌𝑌 = 𝑃𝑃𝑃𝑌𝑌𝑌 .

The projection matrix 𝑃𝑃𝑃 is also known as the influence matrix or hat matrix and maps
observed values to fitted values.

Leverage Values

The diagonal entries of 𝑃𝑃𝑃 , given by

ℎ𝑖𝑖 = 𝑋𝑋𝑋′
𝑖(𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋𝑖,

are called leverage values or hat values and measure how far away the regressor values of
the 𝑖-th observation 𝑋𝑖 are from those of the other observations.

Properties of leverage values:

0 ≤ ℎ𝑖𝑖 ≤ 1,
𝑛

∑
𝑖=1

ℎ𝑖𝑖 = 𝑘.

Leverage values ℎ𝑖𝑖 indicate how much influence an observation 𝑋𝑋𝑋𝑖 has on the regression fit,
e.g., the last observation in the following artificial dataset:
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X=c(10,20,30,40,50,60,70,500)
Y=c(1000,2200,2300,4200,4900,5500,7500,10000)
plot(X,Y, main="OLS regression line with and without last observation")
abline(lm(Y~X), col="blue")
abline(lm(Y[1:7]~X[1:7]), col="red")
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OLS regression line with and without last observation

X

Y

hatvalues(lm(Y~X))

1 2 3 4 5 6 7 8
0.1657356 0.1569566 0.1492418 0.1425911 0.1370045 0.1324820 0.1290237 0.9869646

A low leverage implies the presence of many regressor observations similar to 𝑋𝑋𝑋𝑖 in the sample,
while a high leverage indicates a lack of similar observations near 𝑋𝑋𝑋𝑖.

An observation with a high leverage ℎ𝑖𝑖 but a response value 𝑌𝑖 that is close to the true regres-
sion line 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽 (indicating a small error 𝑢𝑖) is considered a good leverage point. Despite being
unusual in the regressor space, this point improves estimation precision because it provides
valuable information about the regression relationship in regions where data is sparse.

Conversely, a bad leverage point occurs when both ℎ𝑖𝑖 and the error 𝑢𝑖 are large, indicating
both unusual regressor and response values. This can misleadingly impact the regression fit.

The actual error term is unknown, but standardized residuals can be used to differentiate
between good and bad leverage points.
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Standardized Residuals

Many regression diagnostic tools rely on the residuals of the OLS estimation 𝑢̂𝑖 because they
provide insight into the properties of the unknown error terms 𝑢𝑖.

Under the homoskedastic linear regression model (A1)–(A5), the errors are independent and
have the property

𝑉 𝑎𝑟(𝑢𝑖 ∣ 𝑋𝑋𝑋) = 𝜎2.
Since 𝑃𝑃𝑃𝑋𝑋𝑋 = 𝑋𝑋𝑋 and, therefore,

̂𝑢𝑢𝑢 = (𝐼𝐼𝐼𝑛 − 𝑃𝑃𝑃)𝑌𝑌𝑌 = (𝐼𝐼𝐼𝑛 − 𝑃𝑃𝑃)(𝑋𝑋𝑋𝛽𝛽𝛽 + 𝑢𝑢𝑢) = (𝐼𝐼𝐼𝑛 − 𝑃𝑃𝑃)𝑢𝑢𝑢,

the residuals have a different property:

𝑉 𝑎𝑟( ̂𝑢𝑢𝑢 ∣ 𝑋𝑋𝑋) = 𝜎2(𝐼𝐼𝐼𝑛 − 𝑃𝑃𝑃).

The 𝑖-th residual satisfies
𝑉 𝑎𝑟(𝑢̂𝑖 ∣ 𝑋𝑋𝑋) = 𝜎2(1 − ℎ𝑖𝑖),

where ℎ𝑖𝑖 is the 𝑖-th leverage value.

Under the assumption of homoskedasticity, the variance of 𝑢̂𝑖 depends on 𝑋𝑋𝑋, while the variance
of 𝑢𝑖 does not. Dividing by √1 − ℎ𝑖𝑖 removes the dependency:

𝑉 𝑎𝑟( 𝑢̂𝑖
√1 − ℎ𝑖𝑖

∣ 𝑋𝑋𝑋) = 𝜎2

The standardized residuals are defined as follows:

𝑟𝑖 ∶= 𝑢̂𝑖

√𝑠2
𝑢̂(1 − ℎ𝑖𝑖)

.

Standardized residuals are available using the R command rstandard().

Residuals vs. Leverage Plot

Plotting standardized residuals against leverage values provides a graphical tool for detecting
outliers. High leverage points have a strong influence on the regression fit. High leverage values
with standardized residuals close to 0 are good leverage points, and high leverage values with
large standardized residuals are bad leverage points.

fit = lm(score ~ STR + english + lunch, data = CASchools)
plot(fit, which = 5)
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The plot indicates that some observations have a higher leverage value than others, but none
of these have a large standardized residual, so they are not bad leverage points.

Here is an example with two high leverage points. Observation 𝑖 = 200 is a good leverage
point and 𝑖 = 199 is a bad leverage point:

## simulate regressors and errors
X = rnorm(250)
u = rnorm(250)
## set some unusual observations manually
X[199] = 6
X[200] = 6
u[199] = 5
u[200] = 0
## define dependent variable
Y = X + u
## residuals vs leverage plot
plot(lm(Y ~ X), which = 5)

139



0.00 0.02 0.04 0.06 0.08 0.10 0.12

−
2

0
2

4

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

lm(Y ~ X)

Cook's distance 0.5

0.5

1

Residuals vs Leverage

199

1655

The plot also shows Cook’s distance thresholds. Cook’s distance for observation 𝑖 is defined
as

𝐷𝑖 =
( ̂𝛽𝛽𝛽(−𝑖) − ̂𝛽𝛽𝛽)′𝑋𝑋𝑋′𝑋𝑋𝑋( ̂𝛽𝛽𝛽(−𝑖) − ̂𝛽𝛽𝛽)

𝑘𝑠2
𝑢̂

,

where
̂𝛽𝛽𝛽(−𝑖) − ̂𝛽𝛽𝛽 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋𝑖

𝑢̂𝑖
1 − ℎ𝑖𝑖

.

Here, ̂𝛽𝛽𝛽(−𝑖) is the 𝑖-th leave-one-out estimator (the OLS estimator when the 𝑖-th observation
is left out).

This principle is called Jackknife because it is similar to the way a jackknife is used to
cut something. The idea is to “cut” the data by removing one observation at a time and
then re-estimating the model. The impact of cutting the 𝑖-th observation is proportional to
𝑢̂𝑖/(1 − ℎ𝑖𝑖).
We should pay special attention to points outside Cook’s distance thresholds of 0.5 and 1 and
check for measurement errors or other anomalies.

Jackknife Standard Errors

Recall the heteroskedasticity-robust White estimator for the meat matrix ΩΩΩ = 𝐸[𝑢2
𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖] in
the sandwich formula tor the OLS variance:

Ω̂ΩΩ = 1
𝑛

𝑛
∑
𝑖=1

𝑢̂2
𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖.
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If there are leverage points in the data, their presence might have a large influence on the
estimation of ΩΩΩ.

An alternative way of estimating the covariance matrix is to weight the observations by the
leverage values:

Ω̂ΩΩjack = 1
𝑛

𝑛
∑
𝑖=1

𝑢̂2
𝑖

(1 − ℎ𝑖𝑖)2𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖.

Observations with high leverage values have a small denominator (1 − ℎ𝑖𝑖)2 and are therefore
downweighted, which makes this estimator more robust to the influence of leverage points.

The full jackknife covariance matrix estimator is conventionally labeled as the HC3 estima-
tor:

𝑉𝑉𝑉 jack = 𝑉𝑉𝑉 hc3 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1 Ω̂ΩΩjack (𝑋𝑋𝑋′𝑋𝑋𝑋)−1 .
There is also the HC2 estimator, which uses 𝑢̂2

𝑖 (1 − ℎ𝑖𝑖) instead of 𝑢̂2
𝑖 /(1 − ℎ𝑖𝑖)2, but this is

less common.

The HC3 standard errors are:

𝑠𝑒ℎ𝑐3( ̂𝛽𝑗) = √[𝑉𝑉𝑉 ℎ𝑐3]𝑗𝑗.

If you have a small sample size and you are worried about influential observations, you should
use the HC3 standard errors instead of the HC1 standard errors.

To display the HC3 standard errors in the regression table, you can use modelsummary(fit,
vcov = "HC3").

8.8 Cluster-robust Inference

Recall that in many economic applications, observations are naturally clustered. For instance,
students within the same school, workers in the same firm, or households in the same village
may share common unobserved factors that induce correlation in their outcomes.

As discussed in Section 5, for clustered observations we can use the notation (𝑋𝑋𝑋𝑖𝑔, 𝑌𝑖𝑔), where
the linear regression equation is:

𝑌𝑖𝑔 = 𝑋𝑋𝑋′
𝑖𝑔𝛽𝛽𝛽 + 𝑢𝑖𝑔, 𝑖 = 1, … , 𝑛𝑔, 𝑔 = 1, … , 𝐺.

Under independence across clusters but allowing for arbitrary correlation within clusters, the
OLS estimator remains unbiased, but its standard variance formula is no longer valid. As we
saw in Section 5, the conditional variance

𝑉 𝑎𝑟( ̂𝛽𝛽𝛽 ∣ 𝑋𝑋𝑋) = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1
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satisfies

𝑋𝑋𝑋′𝐷𝐷𝐷𝑋𝑋𝑋 =
𝐺

∑
𝑔=1

𝐸[(
𝑛𝑔

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑔𝑢𝑖𝑔)(
𝑛𝑔

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑔𝑢𝑖𝑔)
′
∣𝑋𝑋𝑋].

Cluster-robust Standard Errors

When observations within clusters are correlated, using ordinary standard errors (even
heteroskedasticity-robust ones) will typically underestimate the true sampling variability of
the OLS estimator.

To account for within-cluster correlation, we use cluster-robust standard errors. The key
insight is to estimate the middle part of the sandwich formula above by allowing for arbitrary
within-cluster correlation, while maintaining the independence assumption across clusters.

The cluster-robust variance estimator is:

𝑉𝑉𝑉 𝐶𝑅0 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1
𝐺

∑
𝑔=1

(
𝑛𝑔

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑔𝑢̂𝑖𝑔)(
𝑛𝑔

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑔𝑢̂𝑖𝑔)
′
(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

This estimator, also known as the clustered sandwich estimator, allows for arbitrary cor-
relation of errors within clusters, including both heteroskedasticity and serial correlation. Like
the HC estimators, it is consistent under large-sample asymptotics.

Finite Sample Correction

Similar to the HC1 correction for heteroskedasticity, a small-sample correction for the cluster-
robust estimator is commonly applied:

𝑉𝑉𝑉 𝐶𝑅1 = 𝐺
𝐺 − 1 ⋅ 𝑛 − 1

𝑛 − 𝑘 ⋅ 𝑉𝑉𝑉 𝐶𝑅0,

where 𝐺 is the number of clusters, 𝑛 is the total sample size, and 𝑘 is the number of regressors.

The corresponding cluster-robust standard errors are:

𝑠𝑒𝐶𝑅1( ̂𝛽𝑗) = √[𝑉𝑉𝑉 𝐶𝑅1]𝑗𝑗.
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When to Cluster

You should use cluster-robust standard errors when:

1. There’s a clear grouping structure in your data (schools, villages, firms, etc.)
2. You expect errors to be correlated within these groups
3. You have a sufficient number of clusters (generally at least 30-50)

Common examples include: - Student-level data clustered by school or classroom - Firm-level
data clustered by industry - Individual-level data clustered by geographic region - Panel data
clustered by individual or time period

Implementation in R

The CASchools dataset contains information on 420 California Schools from 45 different coun-
ties, which can be viewed as clusters.

The fixest package makes it easy to implement cluster-robust standard errors:

feols(score ~ STR + english, data = CASchools, cluster = "county") |> summary()

OLS estimation, Dep. Var.: score
Observations: 420
Standard-errors: Clustered (county)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 686.032245 15.802838 43.41196 < 2.2e-16 ***
STR -1.101296 0.754387 -1.45986 0.15143
english -0.649777 0.030230 -21.49427 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 14.4 Adj. R2: 0.423681

After accounting for clustering, the coefficient on STR is no longer statistically significant.

You can also use the modelsummary() function to compare the same regression with different
standard errors:

fit1 = feols(score ~ STR + english, data = CASchools)
## List of standard errors:
myvcov = list("IID", "HC1", "HC3", ~county)
modelsummary(fit1, stars = TRUE, statistic = "conf.int", vcov = myvcov)
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(1) (2) (3) (4)
(Intercept) 686.032*** 686.032*** 686.032*** 686.032***

[671.464, 700.600] [668.875, 703.189] [668.710, 703.354] [654.969, 717.095]
STR −1.101** −1.101* −1.101* −1.101

[−1.849, −0.354] [−1.952, −0.250] [−1.960, −0.242] [−2.584, 0.382]
english −0.650*** −0.650*** −0.650*** −0.650***

[−0.727, −0.572] [−0.711, −0.589] [−0.711, −0.588] [−0.709, −0.590]
Num.Obs. 420 420 420 420
R2 0.426 0.426 0.426 0.426
R2 Adj. 0.424 0.424 0.424 0.424
AIC 3439.1 3439.1 3439.1 3439.1
BIC 3451.2 3451.2 3451.2 3451.2
RMSE 14.41 14.41 14.41 14.41
Std.Errors IID HC1 HC3 by: county

+ p <0.1, * p <0.05, ** p <0.01, *** p <0.001

Challenges with Cluster-robust Inference

The cluster-robust variance estimator relies on having a large number of clusters. With few
clusters (generally 𝐺 < 30), the estimator may be biased downward, leading to confidence
intervals that are too narrow and overly frequent rejection of null hypotheses.

To account for high leverage points, the CR3 correction is similar to HC3 and applies a leverage
adjustment at the cluster level:

𝑉𝑉𝑉 𝐶𝑅3 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1
𝐺

∑
𝑔=1

(
𝑛𝑔

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑔
𝑢̂𝑖𝑔

1 − ℎ𝑖𝑔
)(

𝑛𝑔

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑔
𝑢̂𝑖𝑔

1 − ℎ𝑖𝑔
)

′
(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

8.9 R Code

statistics-sec08.R
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9 Hypothesis testing

9.1 Statistical hypotheses

A statistical hypothesis is a statement about the population distribution. For instance, we
might be interested in the hypothesis that a population regression coefficient 𝛽𝑗 of a linear
regression model is equal to some value 𝛽0

𝑗 or whether it is unequal to that value.

For instance, in a regression of test scores on the student-teacher ratio, we might be interested
in testing whether adding one more student per class has no effect on test scores – that is,
whether 𝛽𝑗 = 𝛽0

𝑗 = 0.
In hypothesis testing, we divide the parameter space of interest into a null hypothesis and an
alternative hypothesis, for instance

𝐻0 ∶ 𝛽𝑗 = 𝛽0
𝑗⏟⏟⏟⏟⏟

null hypothesis

vs. 𝐻1 ∶ 𝛽𝑗 ≠ 𝛽0
𝑗 .⏟⏟⏟⏟⏟

alternative hypothesis

(9.1)

This idea is not limited to regression coefficients. For any parameter 𝜃 we can test the hypoth-
esis 𝐻0 ∶ 𝜃 = 𝜃0 against its alternative 𝐻1 ∶ 𝜃 ≠ 𝜃0.

In practice, two-sided alternatives are more common, i.e. 𝐻1 ∶ 𝜃 ≠ 𝜃0, but one-sided alterna-
tives are also possible, i.e. 𝐻1 ∶ 𝜃 > 𝜃0 (right-sided) or 𝐻1 ∶ 𝜃 < 𝜃0 (left-sided).

We are interested in testing 𝐻0 against 𝐻1. The idea of hypothesis testing is to construct a
statistic 𝑇0 (test statistic) for which the distribution of 𝑇0 under the assumption that 𝐻0
holds(null distribution) is known, and for which the distribution under 𝐻1 differs from the
null distribution (i.e., the null distribution is informative about 𝐻1).

If the observed value of 𝑇0 takes a value that is likely to occur under the null distribution,
we deduce that there is no evidence against 𝐻0, and consequently we do not reject 𝐻0 (we
accept 𝐻0). If the observed value of 𝑇0 takes a value that is unlikely to occur under the null
distribution, we deduce that there is evidence against 𝐻0, and consequently, we reject 𝐻0 in
favor of 𝐻1.

“Unlikely” means that its occurrence has only a small probability 𝛼. The value 𝛼 is called the
significance level and must be selected by the researcher. It is conventional to use the values
𝛼 = 0.1, 𝛼 = 0.05, or 𝛼 = 0.01, but it is not a hard rule.
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A hypothesis test with significance level 𝛼 is a decision rule defined by a rejection region 𝐼1
and an acceptance region 𝐼0 = 𝐼𝑐

1 so that we

do not reject 𝐻0 if 𝑇0 ∈ 𝐼0,
reject 𝐻0 if 𝑇0 ∈ 𝐼1.

The rejection region is defined such that a false rejection occurs with probability 𝛼, i.e.
𝑃(𝑇0 ∈ 𝐼1⏟

reject

∣ 𝐻0 is true) = 𝛼, (9.2)

where 𝑃(⋅ ∣ 𝐻0 is true) denotes the probability function of the null distribution.

A test that satisfies Equation 9.2 is called a size-𝛼-test. The type I error is the probability
of falsely rejecting 𝐻0 and equals 𝛼 for a size-𝛼-test. The type II error is the probability of
falsely accepting 𝐻0 and depends on the sample size 𝑛 and the unknown parameter value 𝜃
under 𝐻1. Typically, the further 𝜃 is from 𝜃0, and the larger the sample size 𝑛, the smaller
the type II error.

The probability of a type I error is also called the size of a test:

𝑃(reject 𝐻0 ∣ 𝐻0 is true).
The power of a test is the complementary probability of a type II error:

𝑃(reject 𝐻0 ∣ 𝐻1 is true) = 1 − 𝑃(accept 𝐻0 ∣ 𝐻1 is true).
A hypothesis test is consistent for 𝐻1 if the power tends to 1 as 𝑛 tends to infinity for any
parameter value under the alternative.

Table 9.1: Testing Decisions

Accept 𝐻0 Reject 𝐻0
𝐻0 is true correct decision type I error
𝐻1 is true type II error correct decision

In many cases, the probability distribution of 𝑇0 under 𝐻0 is known only asymptotically. Then,
the rejection region must be defined such that

lim
𝑛→∞

𝑃(𝑇0 ∈ 𝐼1 ∣ 𝐻0 is true) = 𝛼.

We call this test an asymptotic size-𝛼-test.
The decision “accept 𝐻0” does not mean that 𝐻0 is true. Since the probability of a type II
error is unknown in practice, it is more accurate to say that we “fail to reject 𝐻0” instead of
“accept 𝐻0”. The power of a consistent test tends to 1 as 𝑛 increases, so type II errors typically
occur if the sample size is too small. Therefore, to interpret a “fail to reject 𝐻0”, we have to
consider whether our sample size is relatively small or rather large.
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9.2 t-Tests

The t-statistic is the OLS estimator standardized with the standard error. Under (A1)–(A4)
we have

𝑇 =
̂𝛽𝑗 − 𝛽𝑗

𝑠𝑒ℎ𝑐( ̂𝛽𝑗)
𝑑→ 𝒩(0, 1).

This result can be used to test the hypothesis 𝐻0 ∶ 𝛽𝑗 = 𝛽0
𝑗 . The t-statistic for this hypothesis

is

𝑇0 =
̂𝛽𝑗 − 𝛽0

𝑗

𝑠𝑒ℎ𝑐( ̂𝛽𝑗)
,

which satisfies 𝑇0 = 𝑇 𝑑→ 𝒩(0, 1) under 𝐻0.

Therefore, we can test 𝐻0 by checking whether the presumed value 𝛽0
𝑗 falls into the confidence

interval. We do not reject 𝐻0 if

𝛽0
𝑗 ∈ 𝐼 (ℎ𝑐)

1−𝛼 = [ ̂𝛽𝑗 − 𝑡(1− 𝛼
2 ,𝑛−𝑘)𝑠𝑒ℎ𝑐( ̂𝛽𝑗); ̂𝛽𝑗 + 𝑡(1− 𝛼

2 ,𝑛−𝑘)𝑠𝑒ℎ𝑐( ̂𝛽𝑗)].

By the definition of 𝑇0, we have 𝛽0
𝑗 ∈ 𝐼 (ℎ𝑐)

1−𝛼 if and only if |𝑇0| ≤ 𝑡(1− 𝛼
2 ,𝑛−𝑘).

Therefore, the two-sided t-test for 𝐻0 against 𝐻1 ∶ 𝛽𝑗 ≠ 𝛽0
𝑗 is given by the test decision

do not reject 𝐻0 if |𝑇0| ≤ 𝑡(1− 𝛼
2 ,𝑛−𝑘),

reject 𝐻0 if |𝑇0| > 𝑡(1− 𝛼
2 ,𝑛−𝑘).

The value 𝑡(1− 𝛼
2 ,𝑛−𝑘) is called the critical value.

This test is asymptotically of size 𝛼:

lim
𝑛→∞

𝑃(we reject 𝐻0|𝐻0 is true) = 𝛼.

This is because the confidence interval has asymptotically a 1 − 𝛼 coverage rate:

lim
𝑛→∞

𝑃(we do not reject 𝐻0|𝐻0 is true)

= lim
𝑛→∞

𝑃(𝛽0
𝑗 ∈ 𝐼 (ℎ𝑐)

1−𝛼|𝐻0 is true)

= lim
𝑛→∞

𝑃(𝛽𝑗 ∈ 𝐼 (ℎ𝑐)
1−𝛼)

= 1 − 𝛼.

If (A5)–(A6) hold, and 𝑠𝑒ℎ𝑜𝑚( ̂𝛽𝑗) is used instead of 𝑠𝑒ℎ𝑐( ̂𝛽𝑗), then the t-test is of exact size 𝛼.
However, as discussed in the previous section, (A5)–(A6) is an unlikely scenario in practice.
Therefore 𝑠𝑒ℎ𝑐( ̂𝛽𝑗) is the preferred choice.
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library(AER)
cps = read.csv("cps.csv")
fit = lm(wage ~ education + female, data = cps)
coefci(fit, vcov = vcovHC, level = 0.99)

0.5 % 99.5 %
(Intercept) -15.370102 -12.793475
education 2.854842 3.061506
female -7.949469 -7.116664

The 99% confidence intervals indicate that:

• the null hypothesis 𝐻0 ∶ 𝛽2 = 0 (“the marginal effect of education on the wage conditional
on gender is 0”) is rejected at the 1% significance level.

• the null hypothesis 𝐻0 ∶ 𝛽2 = 3 (“the marginal effect of education on the wage conditional
on gender is 3”) is not rejected at the 1% significance level.

Let’s compute 𝑇0 for the hypothesis 𝛽2 = 3 by hand:

## OLS coefficient
betahat2 = fit$coefficient[2]
## HC standard error
se = sqrt(vcovHC(fit)[2,2])
## presumed value for beta2
beta20 = 3
c(betahat2, beta20, se)

education
2.95817398 3.00000000 0.04011445

## test statistic
T0 = (betahat2 - beta20)/se
T0

education
-1.042667

## critical values for 1=%, 5% and 1% levels
n = length(fit$fitted.values)
qt(c(0.95, 0.975, 0.995), df=n-3)
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[1] 1.644884 1.960011 2.575926

Since |𝑇0| = 1.04 is smaller that the critical values for all common significance levels, we cannot
reject 𝐻0 ∶ 𝛽2 = 3.

9.3 The p-value

The p-value is a criterion to reach a hypothesis test decision conveniently:

reject 𝐻0 if p-value < 𝛼
do not reject 𝐻0 if p-value ≥ 𝛼

Formally, the p-value of a two-sided t-test is defined as

𝑝-value = 𝑃(|𝑇 ∗| > |𝑇0| ∣ 𝐻0 is true),

where 𝑇 ∗ is a random variable following the null distribution (in this case, 𝑇 ∗ ∼ 𝑡𝑛−𝑘), and 𝑇0
is the observed value of the test statistic.

The p-value is the probability that a null-distributed random variable produces values at least
as extreme as the test statistic 𝑇0 produced for your sample.

We can express the p-value also using the CDF 𝐹𝑇0
of the null distribution (in this case,

𝑡𝑛−𝑘):

𝑝-value = 𝑃(|𝑇 ∗| > |𝑇0| ∣ 𝐻0 is true)
= 1 − 𝑃(|𝑇 ∗| ≤ |𝑇0| ∣ 𝐻0 is true)
= 1 − 𝐹𝑇0

(|𝑇0|) + 𝐹𝑇0
(−|𝑇0|)

= 2(1 − 𝐹𝑇0
(|𝑇0|)).

Make no mistake, the p-value is not the probability that 𝐻0 is true! It is a measure of how
likely it is that the observed test statistic comes from a sample that has been drawn from a
population where the null hypothesis is true.

Let’s compute the p-value for the hypothesis 𝛽2 = 3 in the wage on education and female
regression by hand. Here, 𝐹𝑇0

is the CDF of the t-distribution with 𝑛 − 3 degrees of freedom.
To compute 𝐹𝑇0

(𝑎), we can use pt(a, df=n-3).

## p-value
2*(1-pt(abs(T0), df = n-3))
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education
0.2971074

The p-value is larger than any common significance level. Hence, we do not reject 𝐻0.

For the hypothesis 𝐻0 ∶ 𝛽2 = 0, we get the following p-value:

T0 = (betahat2 - 0)/se
2*(1-pt(abs(T0), df = n-3))

education
0

The p-value is (almost) 0. Hence, we reject 𝐻0.

More conveniently, the coeftest function from the AER package provides a full summary of
the regression results including the t-statistics and p-values for the hypotheses that 𝐻0 ∶ 𝛽𝑗 = 0
for 𝑗 = 1, … , 𝑘.

coeftest(fit, vcov = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -14.081788 0.500136 -28.156 < 2.2e-16 ***
education 2.958174 0.040114 73.743 < 2.2e-16 ***
female -7.533067 0.161652 -46.601 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

You can specify different standard errors: coeftest(fit, vcov = vcovHC, type = "HC1").
coeftest(fit) returns the t-test results for classical standard errors which is identical to the
output of the base-R command summary(fit), which should not be used in applications with
heteroskedasticity.

To represent very small numbers where there are, e.g., 16 zero digits before the first nonzero
digit after the decimal point, R uses scientific notation in the form e-16. For example, 2.2e-16
means 0.00000000000000022.
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9.4 Multiple testing problem

Consider the usual two-sided t-tests for the hypotheses 𝐻0 ∶ 𝛽1 = 0 (test1) and 𝐻0 ∶ 𝛽2 = 0
(test2).

Each test on its own is a valid hypothesis test of size 𝛼. However, applying these tests one
after the other leads to a multiple testing problem. The probability of falsely rejecting the
joint hypothesis

𝐻0 ∶ 𝛽1 = 0 and 𝛽2 = 0 vs. 𝐻1 ∶ not 𝐻0

is too large. “Not 𝐻0” means “𝛽1 ≠ 0 or 𝛽2 ≠ 0 or both”.

To see this, suppose that, for simplicity, the t-statistics ̂𝛽1/𝑠𝑒( ̂𝛽1) and ̂𝛽2/𝑠𝑒( ̂𝛽2) are indepen-
dent random variables, which implies that the test decisions of the two tests are independent.

𝑃(both tests do not reject ∣ 𝐻0 true)
= 𝑃 ({test1 does not reject} ∩ {test2 does not reject} ∣ 𝐻0 true)
= 𝑃(test1 does not reject ∣ 𝐻0 true) ⋅ 𝑃 (test2 does not reject ∣ 𝐻0 true)
= (1 − 𝛼)2 = 𝛼2 − 2𝛼 + 1

The size of the combined test is larger than 𝛼:

𝑃(at least one test rejects ∣ 𝐻0 is true)
= 1 − 𝑃(both tests do not reject ∣ 𝐻0 is true)
= 1 − (𝛼2 − 2𝛼 + 1) = 2𝛼 − 𝛼2 = 𝛼(2 − 𝛼) > 𝛼

If the two test statistics are dependent, then the probability of at least one of the tests falsely
rejecting depends on their correlation and will also exceed 𝛼.
Each t-test has a probability of falsely rejecting 𝐻0 (type I error) of 𝛼, but if multiple t-tests
are used on different coefficients, then the probability of falsely rejecting at least once (joint
type I error probability) is greater than 𝛼 (multiple testing problem).

Therefore, when multiple hypotheses are to be tested, repeated t-tests will not yield valid
inferences, and another rejection rule must be found for repeated 𝑡-tests.

9.5 Joint Hypotheses

Consider the general hypothesis
𝐻0 ∶ 𝑅𝑅𝑅𝛽𝛽𝛽 = 𝑟𝑟𝑟,

where 𝑅𝑅𝑅 is a 𝑞 × 𝑘 matrix with rank(𝑅𝑅𝑅) = 𝑞 and 𝑟𝑟𝑟 is a 𝑞 × 1 vector.
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Let’s look at a linear regression with 𝑘 = 3:

𝑌𝑖 = 𝛽1 + 𝛽2𝑋𝑖2 + 𝛽3𝑋𝑖3 + 𝑢𝑖

• Example 1: The hypothesis 𝐻0 ∶ (𝛽2 = 0 and 𝛽3 = 0) implies 𝑞 = 2 constraints and is
translated to 𝐻0 ∶ 𝑅𝑅𝑅𝛽𝛽𝛽 = 𝑟𝑟𝑟 with

𝑅𝑅𝑅 = (0 1 0
0 0 1) , 𝑟𝑟𝑟 = (0

0) .

• Example 2: The hypothesis 𝐻0 ∶ 𝛽2 + 𝛽3 = 1 implies 𝑞 = 1 constraint and is translated
to 𝐻0 ∶ 𝑅𝑅𝑅𝛽𝛽𝛽 = 𝑟𝑟𝑟 with

𝑅𝑅𝑅 = (0 1 1) , 𝑟𝑟𝑟 = (1) .

In practice, the most common multiple hypothesis tests are tests of whether multiple coeffi-
cients are equal to zero, which is a test of whether those regressors should be included in the
model.

9.6 Wald Test

The Wald distance is the vector 𝑑𝑑𝑑 = 𝑅𝑅𝑅 ̂𝛽𝛽𝛽−𝑟𝑟𝑟, and the Wald statistic is the squared standardized
Wald distance vector:

𝑊 = 𝑑𝑑𝑑′(𝑅𝑅𝑅𝑉𝑉𝑉 𝑅𝑅𝑅′)−1𝑑𝑑𝑑
= (𝑅𝑅𝑅 ̂𝛽𝛽𝛽 − 𝑟𝑟𝑟)′(𝑅𝑅𝑅𝑉𝑉𝑉 𝑅𝑅𝑅′)−1(𝑅𝑅𝑅 ̂𝛽𝛽𝛽 − 𝑟𝑟𝑟)

Here, 𝑉𝑉𝑉 is a suitable estimator for covariance matrix of the OLS coefficient vector, i.e. 𝑉𝑉𝑉 ℎ𝑐 for
robust testing under (A1)–(A4), and 𝑉𝑉𝑉 ℎ𝑜𝑚 for testing under the special case of homoskedas-
ticity.

Under 𝐻0 we have
𝑊 𝑑→ 𝜒2

𝑞.

The test decision for the Wald test:

do not reject 𝐻0 if 𝑊 ≤ 𝜒2
(1−𝛼,𝑞),

reject 𝐻0 if 𝑊 > 𝜒2
(1−𝛼,𝑞),

where 𝜒2
(𝑝,𝑞) is the 𝑝-quantile of the chi-squared distribution with 𝑞 degrees of freedom. 𝜒2

(𝑝,𝑞)
can be returned using qchisq(p,q).

To test 𝐻0 ∶ 𝛽2 = 𝛽3 = 0 in the regression of wage on education and female (example 1), we
can use the linearHypothesis() function from the AER package:
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## Define r and R
r = c(0,0)
R = rbind(
c(0,1,0),
c(0,0,1)

)
R

[,1] [,2] [,3]
[1,] 0 1 0
[2,] 0 0 1

linearHypothesis(fit,
hypothesis.matrix = R,
rhs = r,
vcov = vcovHC,
test = "Chisq")

Linear hypothesis test:
education = 0
female = 0

Model 1: restricted model
Model 2: wage ~ education + female

Note: Coefficient covariance matrix supplied.

Res.Df Df Chisq Pr(>Chisq)
1 50741
2 50739 2 5977.4 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The null hypothesis is rejected because the p-value is very small. To confirm this, we see in the
output that the Wald statistic is 𝑊 = 5977. The critical value for the common significance
levels are:

qchisq(c(0.9, 0.95, 0.99), df=2)

[1] 4.605170 5.991465 9.210340
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To compute the Wald statistic 𝑊 by hand, we need matrix algebra:

betahat = fit$coefficients
## Wald distance:
d = R %*% betahat - r
## Wald statistic
W = t(d) %*% solve(R %*% vcovHC(fit) %*% t(R)) %*% d
W

[,1]
[1,] 5977.396

Instead of definition the matrix R and vector r, we can also specify our restrictions in
linearHypothesis() directly:

linearHypothesis(fit,
c("education = 0", "female = 0"),
vcov = vcovHC,
test = "Chisq")

Linear hypothesis test:
education = 0
female = 0

Model 1: restricted model
Model 2: wage ~ education + female

Note: Coefficient covariance matrix supplied.

Res.Df Df Chisq Pr(>Chisq)
1 50741
2 50739 2 5977.4 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

If vcov = vcovHC is omitted, then the homoskedasticity-only covariance matrix 𝑉𝑉𝑉 ℎ𝑜𝑚 is used.
If test = "Chisq is omitted, then the F-test is applied, which is introduced below.
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9.7 F-Test

The Wald test is an asymptotic size-𝛼-test under (A1)–(A4). Even if (A5) and (A6) hold true
as well, the Wald test is still only asymptotically valid, i.e.:

lim
𝑛→∞

𝑃(Wald test rejects 𝐻0|𝐻0 true) = 𝛼.

Similarly to the classical t-test, we can construct a test joint test that is of exact size 𝛼 under
(A1)–(A6).

The 𝐹 statistic is the Wald statistic scaled by the number of constraints:

𝐹 = 𝑊
𝑞 = 1

𝑞 (𝑅𝑅𝑅 ̂𝛽𝛽𝛽 − 𝑟𝑟𝑟)′(𝑅𝑅𝑅𝑉𝑉𝑉 𝑅𝑅𝑅′)−1(𝑅𝑅𝑅 ̂𝛽𝛽𝛽 − 𝑟𝑟𝑟).

If (A1)–(A6) hold true, and if 𝑉𝑉𝑉 = 𝑉𝑉𝑉 ℎ𝑜𝑚 is used, it can be shown that

𝐹 ∼ 𝐹𝑞;𝑛−𝑘

for any finite sample size 𝑛, where 𝐹𝑞;𝑛−𝑘 is the F-distribution with 𝑞 degrees of freedom in
the numerator and 𝑛 − 𝑘 degrees of freedom in the denominator.

F-distribution

If 𝑄1 ∼ 𝜒2
𝑚 and 𝑄2 ∼ 𝜒2

𝑟, and if 𝑄1 and 𝑄2 are independent, then

𝑌 = 𝑄1/𝑚
𝑄2/𝑟

is 𝐹 -distributed with parameters 𝑚 and 𝑟, written 𝑌 ∼ 𝐹𝑚,𝑟.

The parameter 𝑚 is called the degrees of freedom in the numerator; 𝑟 is the degree of freedom
in the denominator.

If 𝑟 → ∞ then the distribution of 𝑚𝑌 approaches 𝜒2
𝑚

F-test decision rule

The test decision for the F-test:

do not reject 𝐻0 if 𝐹 ≤ 𝐹(1−𝛼,𝑞,𝑛−𝑘),
reject 𝐻0 if 𝐹 > 𝐹(1−𝛼,𝑞,𝑛−𝑘),
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Figure 9.1: 𝐹 -distribution

where 𝐹(𝑝,𝑚1,𝑚2) is the 𝑝-quantile of the F distribution with 𝑚1 degrees of freedom in the
numerator and 𝑚2 degrees of freedom in the denominator. 𝐹(𝑝,𝑚1,𝑚2) can be returned using
qf(p,m1,m2).

For single constraint (𝑞 = 1) hypotheses of the form 𝐻0 ∶ 𝛽𝑗 = 𝛽0
𝑗 , the F-test is equivalent to

a two-sided t-test.

• If (A1)–(A6) hold true and 𝑉𝑉𝑉 = 𝑉𝑉𝑉 ℎ𝑜𝑚 is used, the F-test has exact size 𝛼, similar to the
exact t-test for this case.

• If (A1)–(A5) hold true and 𝑉𝑉𝑉 = 𝑉𝑉𝑉 ℎ𝑜𝑚 is used, the F-test and the Wald-test have asymp-
totic size 𝛼.

• If (A1)–(A4) hold true and 𝑉𝑉𝑉 = 𝑉𝑉𝑉 ℎ𝑐 is used, the F-test and the Wald-test have asymp-
totic size 𝛼.

The F-test tends to be more conservative than the Wald test in small samples, meaning that
rejection by the F-test generally implies rejection by the Wald test, but not necessarily vice
versa. Due to this more conservative nature, which helps control false rejections (Type I errors)
in small samples, the F-test is often preferred in practice.

linearHypothesis(fit,
c("education = 0", "female = 0"),
vcov = vcovHC,
test = "F")
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Linear hypothesis test:
education = 0
female = 0

Model 1: restricted model
Model 2: wage ~ education + female

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 50741
2 50739 2 2988.7 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here, we have 𝐹 = 𝑊/2. The critical values for the common significance level can be obtained
as follows:

n = length(fit$fitted.values)
k = 3
q = 2
qf(c(0.9, 0.95, 0.99), q, n-k)

[1] 2.302690 2.995909 4.605588

Since 𝐹 = 2988.7, the null hypothesis is rejected at all common significance levels.

9.8 Diagnostics tests

The asymptotic properties of the OLS estimator and inferential methods using HC-type stan-
dard errors do not depend on the validity of the homoskedasticity and normality assumptions
(A5)–(A6).

However, if you are interested in exact inference, verifying the assumptions (A5)–(A6) becomes
crucial, especially in small samples.
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9.8.1 Breusch-Pagan Test (Koenker’s version)

Under homoskedasticity, the variance of the error term does not depend on the values of the
regressors.

To test for heteroskedasticity, we regress the squared residuals on the regressors.

𝑢̂2
𝑖 = 𝑋𝑋𝑋′

𝑖𝛾𝛾𝛾 + 𝑣𝑖, 𝑖 = 1, … , 𝑛. (9.3)

Here, 𝛾𝛾𝛾 are the auxiliary coefficients and 𝑣𝑖 are the auxiliary error terms. Under homoskedas-
ticity, the regressors should not be able to explain any variation in the residuals.

Let 𝑅2
𝑎𝑢𝑥 be the R-squared coefficient of the auxiliary regression of Equation 9.3. The test

statistic:
𝐵𝑃 = 𝑛𝑅2

𝑎𝑢𝑥

Under the null hypothesis of homoskedasticity, we have

𝐵𝑃 𝑑→ 𝜒2
𝑘−1

Test decision rule: Reject 𝐻0 if 𝐵𝑃 exceeds 𝜒2
(1−𝛼,𝑘−1).

In R we can apply the bptest() function from the AER package to the lm object of our
regression.

bptest(fit)

studentized Breusch-Pagan test

data: fit
BP = 1070.3, df = 2, p-value < 2.2e-16

The BP test clearly rejects 𝐻0, which is strong statistical evidence that the errors are het-
eroskedastic.

9.8.2 Jarque-Bera Test

A general property of any normally distributed random variable is that it has a skewness of 0
and a kurtosis of 3.

Under (A5)–(A6), we have 𝑢𝑖 ∼ 𝒩(0, 𝜎2), which implies 𝐸[𝑢3
𝑖 ] = 0 and 𝐸[𝑢4

𝑖 ] = 3𝜎4.
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Consider the sample skewness and the sample kurtosis of the residuals from your regression:

𝑠𝑘𝑒𝑤𝑢̂ = 1
𝑛𝜎̂3

𝑢̂

𝑛
∑
𝑖=1

𝑢̂3
𝑖 , 𝑘𝑢𝑟𝑡𝑢̂ = 1

𝑛𝜎̂4
𝑢̂

𝑛
∑
𝑖=1

𝑢̂4
𝑖

Jarque-Bera test statistic and null distribution if (A5)–(A6) hold:

𝐽𝐵 = 𝑛(1
6(𝑠𝑘𝑒𝑤𝑢̂)2 + 1

24(𝑘𝑢𝑟𝑡𝑢̂ − 3)2) 𝑑→ 𝜒2
2.

Test decision rule: Reject the null hypothesis of normality if 𝐽𝐵 exceeds 𝜒2
(1−𝛼,2).

Note that the Jarque-Bera test is sensitive to outliers.

In R we apply use the jarque.test() function from the moments package to the residual
vector from our regression.

library(moments)
jarque.test(fit$residuals)

Jarque-Bera Normality Test

data: fit$residuals
JB = 2230900, p-value < 2.2e-16
alternative hypothesis: greater

The JB test clearly rejects 𝐻0, which is strong statistical evidence that the errors are not
normally distributed.

The results of the BP and the JB test indicate that classical standard errors 𝑠𝑒(𝛽𝑗) and the
classical covariance matrix estimators 𝑉𝑉𝑉 ℎ𝑜𝑚 should not be used. Instead, HC-versions should
be applied.

9.9 Nonliearities in test score regressions

Let’s use the hypothesis tests from this section to conduct a study on the relationship between
test scores and the student-teacher ratio.
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data(CASchools, package = "AER")
## append student-teacher ratio
CASchools$STR = CASchools$students/CASchools$teachers
## append average test score
CASchools$score = (CASchools$read+CASchools$math)/2
## append high English learner share dummy variable
CASchools$HiEL = (CASchools$english >= 10) |> as.numeric()

This section examines three key questions about test scores and the student-teacher ratio.

• First, it explores if reducing the student-teacher ratio affects test scores differently based
on the number of English learners, even when considering economic differences across
districts.

• Second, it investigates if this effect varies depending on the student-teacher ratio.

• Lastly, it aims to determine the expected impact on test scores when the student-teacher
ratio decreases by two students per teacher, considering both economic factors and po-
tential nonlinear relationships.

The logarithm of district income is used following our previous empirical analysis, which sug-
gested that this specification captures the nonlinear relationship between scores and income.

We leave out the expenditure per pupil (expenditure) from our analysis because including it
would suggest that spending changes with the student-teacher ratio (in other words, we would
not be holding expenditures per pupil constant: bad control).

We will consider 7 different model specifications:

# estimate all models
mod1 = lm(score ~ STR + english + lunch, data = CASchools)
mod2 = lm(score ~ STR + english + lunch + log(income), data = CASchools)
mod3 = lm(score ~ STR + HiEL + HiEL:STR, data = CASchools)
mod4 = lm(score ~ STR + HiEL + HiEL:STR + lunch + log(income), data = CASchools)
mod5 = lm(score ~ STR + I(STR^2) + I(STR^3) + HiEL + lunch + log(income),

data = CASchools)
mod6 = lm(score ~ STR + I(STR^2) + I(STR^3) + HiEL + HiEL:STR + HiEL:I(STR^2)

+ HiEL:I(STR^3) + lunch + log(income), data = CASchools)
mod7 = lm(score ~ STR + I(STR^2) + I(STR^3) + english + lunch + log(income),

data = CASchools)

# gather robust standard errors in a list
rob_se = list(sqrt(diag(vcovHC(mod1))),

sqrt(diag(vcovHC(mod2))),
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sqrt(diag(vcovHC(mod3))),
sqrt(diag(vcovHC(mod4))),
sqrt(diag(vcovHC(mod5))),
sqrt(diag(vcovHC(mod6))),
sqrt(diag(vcovHC(mod7))))

library(stargazer)
stargazer(mod1, mod2, mod3, mod4,

mod5, mod6, mod7,
font.size = "footnotesize",
se = rob_se,
type="latex",
omit.stat = "f", df=FALSE, header = FALSE)

The stars in the regression output indicate the statistical significance of each coefficient based
on a t-test of the hypothesis 𝐻0 ∶ 𝛽𝑗 = 0. No stars indicate that the coefficient is not
statistically significant (cannot reject 𝐻0 at conventional significance levels). One star (∗)
denotes significance at the 10% level (pval < 0.10), two stars (∗∗) indicate significance at the
5% level (pval < 0.05), and three stars (∗∗∗) indicate significance at the 1% level (pval <
0.01).

What can be concluded from the results presented?

i) First, we find that there is evidence of heteroskedasticity and non-normality, because the
Breusch-Pagan test and the Jarque-Bera test reject. Therefore, HC-robust tests should
be used.

bptest(mod1)

studentized Breusch-Pagan test

data: mod1
BP = 9.9375, df = 3, p-value = 0.0191

jarque.test(mod1$residuals)

Jarque-Bera Normality Test

data: mod1$residuals
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Table 9.2

Dependent variable:
score

(1) (2) (3) (4) (5) (6) (7)
STR −0.998∗∗∗ −0.734∗∗∗ −0.968 −0.531 64.339∗∗ 83.702∗∗∗ 65.285∗∗

(0.274) (0.261) (0.599) (0.350) (27.295) (31.506) (27.708)

english −0.122∗∗∗ −0.176∗∗∗ −0.166∗∗∗

(0.033) (0.034) (0.035)

I(STR 2̂) −3.424∗∗ −4.381∗∗∗ −3.466∗∗

(1.373) (1.597) (1.395)

I(STR 3̂) 0.059∗∗∗ 0.075∗∗∗ 0.060∗∗∗

(0.023) (0.027) (0.023)

lunch −0.547∗∗∗ −0.398∗∗∗ −0.411∗∗∗ −0.420∗∗∗ −0.418∗∗∗ −0.402∗∗∗

(0.024) (0.034) (0.029) (0.029) (0.029) (0.034)

log(income) 11.569∗∗∗ 12.124∗∗∗ 11.748∗∗∗ 11.800∗∗∗ 11.509∗∗∗

(1.841) (1.823) (1.799) (1.809) (1.834)

HiEL 5.639 5.498 −5.474∗∗∗ 816.076∗∗

(19.889) (10.012) (1.046) (354.100)

STR:HiEL −1.277 −0.578 −123.282∗∗

(0.986) (0.507) (54.290)

I(STR 2̂):HiEL 6.121∗∗

(2.752)

I(STR 3̂):HiEL −0.101∗∗

(0.046)

Constant 700.150∗∗∗ 658.552∗∗∗ 682.246∗∗∗ 653.666∗∗∗ 252.050 122.353 244.809
(5.641) (8.749) (12.071) (10.053) (179.724) (205.050) (181.899)

Observations 420 420 420 420 420 420 420
R2 0.775 0.796 0.310 0.797 0.801 0.803 0.801
Adjusted R2 0.773 0.794 0.305 0.795 0.798 0.799 0.798
Residual Std. Error 9.080 8.643 15.880 8.629 8.559 8.547 8.568

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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JB = 10.626, p-value = 0.004926
alternative hypothesis: greater

ii) We see the estimated coefficient of STR is highly significant in all models except from
specifications (3) and (4).

iii) When we add log(income) to model (1) in the second specification, all coefficients
remain highly significant while the coefficient on the new regressor is also statistically
significant at the 1% level. In addition, the coefficient on STR is now 0.27 higher than in
model (1), which suggests a possible reduction in omitted variable bias when including
log(income) as a regressor. For these reasons, it makes sense to keep this variable in
other models too.

iv) Models (3) and (4) include the interaction term between STR and HiEL, first without
control variables in the third specification and then controlling for economic factors in
the fourth. The estimated coefficient for the interaction term is not significant at any
common level in any of these models, nor is the coefficient on the dummy variable HiEL.
However, this result is misleading and we should not conclude that none of the variables
has a non-zero marginal effect because the coefficients cannot be interpreted separately
from each other. What we can learn from the fact that the coefficient of STR:HiEL alone
is not significantly different from zero is that the impact of the student-teacher ratio on
test scores remains consistent across districts with high and low proportions of English
learning students. Let’s test the hypotheses that all coefficients that involve STR are
zero and all coefficients that involve HiEL are zero. We find that 𝐻0 is rejected for both
hypotheses and the overall marginal effects are clearly significant:

linearHypothesis(mod3, c("STR = 0", "STR:HiEL = 0"), vcov=vcovHC)

Linear hypothesis test:
STR = 0
STR:HiEL = 0

Model 1: restricted model
Model 2: score ~ STR + HiEL + HiEL:STR

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 418
2 416 2 5.4228 0.004732 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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linearHypothesis(mod3, c("HiEL = 0", "STR:HiEL = 0"), vcov=vcovHC)

Linear hypothesis test:
HiEL = 0
STR:HiEL = 0

Model 1: restricted model
Model 2: score ~ STR + HiEL + HiEL:STR

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 418
2 416 2 88.806 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

v) In regression (5) we have included quadratic and cubic terms for STR, while omitting the
interaction term between STR and HiEL, since it was not significant in specification (4).
The results indicate high levels of significance for these estimated coefficients and we can
therefore assume the presence of a nonlinear effect of the student-teacher ration on test
scores. This can be verified with an 𝐹 -test of 𝐻0 ∶ 𝛽3 = 𝛽4 = 0:

linearHypothesis(mod5, c("I(STR^2) = 0", "I(STR^3) = 0"), vcov=vcovHC)

Linear hypothesis test:
I(STR^2) = 0
I(STR^3) = 0

Model 1: restricted model
Model 2: score ~ STR + I(STR^2) + I(STR^3) + HiEL + lunch + log(income)

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 415
2 413 2 5.0205 0.00701 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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vi) Regression (6) further examines whether the proportion of English learners influences
the student-teacher ratio, incorporating the interaction terms 𝐻𝑖𝐸𝐿⋅𝑆𝑇 𝑅, 𝐻𝑖𝐸𝐿⋅𝑆𝑇 𝑅2

and 𝐻𝑖𝐸𝐿 ⋅ 𝑆𝑇 𝑅3. Each individual 𝑡-test confirms significant effects. To validate this,
we perform a robust 𝐹 -test to assess 𝐻0 ∶ 𝛽8 = 𝛽9 = 𝛽10 = 0.

linearHypothesis(mod6, c("STR:HiEL = 0", "I(STR^2):HiEL = 0", "I(STR^3):HiEL = 0"), vcov=vcovHC)

Linear hypothesis test:
STR:HiEL = 0
I(STR^2):HiEL = 0
I(STR^3):HiEL = 0

Model 1: restricted model
Model 2: score ~ STR + I(STR^2) + I(STR^3) + HiEL + HiEL:STR + HiEL:I(STR^2) +

HiEL:I(STR^3) + lunch + log(income)

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 413
2 410 3 2.1885 0.08882 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

vii) With a 𝑝-value of 0.08882 we can just reject the null hypothesis at the 10% level. This
provides only weak evidence that the regression functions are different for districts with
high and low percentages of English learners.

viii) In model (7), we employ a continuous measure for the proportion of English learners
instead of a dummy variable (thus omitting interaction terms). We note minimal alter-
ations in the coefficient estimates for the remaining regressors. Consequently, we infer
that the findings observed in model (5) are robust and not influenced significantly by
the method used to measure the percentage of English learners.

We can now address the initial questions raised in this section:

• First, in the linear models, the impact of the percentage of English learners on changes
in test scores due to variations in the student-teacher ratio is minimal, a conclusion
that holds true even after accounting for students’ economic backgrounds. Although the
cubic specification (6) suggests that the relationship between student-teacher ratio and
test scores is influenced by the proportion of English learners, the magnitude of this
influence is not significant.
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• Second, while controlling for students’ economic backgrounds, we identify nonlinearities
in the association between student-teacher ratio and test scores.

• Lastly, under the linear specification (2), a reduction of two students per teacher
in the student-teacher ratio is projected to increase test scores by approximately 1.46
points. As this model is linear, this effect remains consistent regardless of class size. For
instance, assuming a student-teacher ratio of 20, the nonlinear model (5) indicates
that the reduction in student-teacher ratio would lead to an increase in test scores by

64.33 ⋅ 18 + 182 ⋅ (−3.42) + 183 ⋅ (0.059)
− (64.33 ⋅ 20 + 202 ⋅ (−3.42) + 203 ⋅ (0.059))

≈ 3.3

points. If the ratio was 22, a reduction to 20 leads to a predicted improvement in test
scores of

64.33 ⋅ 20 + 202 ⋅ (−3.42) + 203 ⋅ (0.059)
− (64.33 ⋅ 22 + 222 ⋅ (−3.42) + 223 ⋅ (0.059))

≈ 2.4

points. This suggests that the effect is more evident in smaller classes.

9.10 R-codes

statistics-sec11.R
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10 Estimation Theory

10.1 Bias, Variance, and MSE

Let 𝜃 denote a population parameter and ̂𝜃𝑛 an estimator based on a sample of size 𝑛.
Definitions

• Bias:
Bias( ̂𝜃𝑛) = 𝐸[ ̂𝜃𝑛] − 𝜃.

• Sampling Variance:
Var( ̂𝜃𝑛) = 𝐸[( ̂𝜃𝑛 − 𝐸[ ̂𝜃𝑛])2]

• Mean Squared Error:

MSE( ̂𝜃𝑛) = 𝐸[( ̂𝜃𝑛 − 𝜃)2] = Var( ̂𝜃𝑛) + Bias( ̂𝜃𝑛)2.

An estimator ̂𝜃𝑛 is unbiased if Bias( ̂𝜃𝑛) = 0 for any fixed 𝑛.
̂𝜃𝑛 is asymptotically unbiased if lim𝑛→∞ Bias( ̂𝜃𝑛) = 0.

Bias–variance trade-off: Unbiasedness is only one dimension of estimator quality. A slightly
biased estimator can have much smaller variance and thus lower MSE.

Sample mean

Let 𝑌1, … , 𝑌𝑛 be an i.i.d. sample with 𝜇 = 𝐸[𝑌𝑖] and 𝜎2 = Var(𝑌𝑖) < ∞.

The sample mean is unbiased:

𝐸[𝑌 ] = 1
𝑛

𝑛
∑
𝑖=1

𝐸[𝑌𝑖] = 𝜇.

Thus, the MSE equals the variance:

MSE(𝑌 ) = Var(𝑌 ) = 1
𝑛2

𝑛
∑
𝑖=1

Var(𝑌𝑖) = 𝜎2

𝑛 .
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Sample variance

Let 𝑌1, … , 𝑌𝑛 be an i.i.d. sample with 𝜇 = 𝐸[𝑌𝑖], 𝜎2 = Var(𝑌𝑖) < ∞, and 𝜅 = kurt(𝑌𝑖) < ∞.

By decomposing 𝑌𝑖 −𝑌 = (𝑌𝑖 −𝜇)−(𝑌 −𝜇), we can rearrange the sample variance as follows:

𝜎̂2
𝑌 = 1

𝑛
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 = 1
𝑛

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝜇)2 − (𝑌 − 𝜇)2.

Thus, the mean of the sample variance is

𝐸[𝜎̂2
𝑌 ] = 1

𝑛
𝑛

∑
𝑖=1

𝐸[(𝑌𝑖 − 𝜇)2] − 𝐸[(𝑌 − 𝜇)2]

= 1
𝑛

𝑛
∑
𝑖=1

Var(𝑌𝑖) − Var(𝑌 )

= 𝜎2 − 𝜎2

𝑛 = 𝑛 − 1
𝑛 𝜎2.

The sample variance is a downward biased estimator for the population variance 𝜎2:

Bias(𝜎̂2
𝑌 ) = 𝑛 − 1

𝑛 𝜎2 − 𝜎2 = −𝜎2

𝑛 .

However, the bias tends to zero as 𝑛 → ∞, so the sample variance is asymptotically unbiased.

Recall the adjusted sample variance:

𝑠2
𝑌 = 1

𝑛 − 1
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 = 𝑛
𝑛 − 1𝜎̂2

𝑌

It is unbiased:
𝐸[𝑠2

𝑌 ] = 𝑛
𝑛 − 1𝐸[𝜎̂2

𝑌 ] = 𝑛
𝑛 − 1

𝑛 − 1
𝑛 𝜎2 = 𝜎2.

The degree of freedom correction can be interpreted as a bias correction.

The sampling variances of the unadjusted and adjusted sample variance are

Var(𝜎̂2
𝑌 ) = 𝜎4

𝑛 (𝜅 − 𝑛 − 3
𝑛 − 1)(𝑛 − 1)2

𝑛2 ,

Var(𝑠2
𝑌 ) = 𝜎4

𝑛 (𝜅 − 𝑛 − 3
𝑛 − 1).

Thus, Var(𝑠2
𝑌 ) > Var(𝜎̂2

𝑌 ). 𝑠2
𝑌 is unbiased for 𝜎2 but it estimates 𝜎2 less precise than 𝜎̂2

𝑌 .
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The MSE of 𝑠2
𝑌 equals 𝑉 𝑎𝑟(𝑠2

𝑌 ) while the MSE of 𝜎̂2
𝑌 is

MSE(𝜎̂2
𝑌 ) = Var(𝜎̂2

𝑌 ) + Bias(𝜎̂2
𝑌 )2

= 𝜎4

𝑛 [(𝜅 − 𝑛 − 3
𝑛 − 1)(𝑛 − 1)2

𝑛2 + 1
𝑛].

It is not possible to universally determine which estimator has a lower MSE because this
depends on the population kurtosis 𝜅 of the underlying distribution.

However, it can be shown that for all distributions with 𝜅 ≥ 1.5, the relation MSE(𝑠2
𝑌 ) >

MSE(𝜎̂2
𝑌 ) holds, which implies that 𝜎̂2

𝑌 is preferred based on the bias-variance tradeoff for
most distributions (recall that the normal distribution has 𝜅 = 3).

OLS Coefficient

Bias

Recall the model equation in matrix form:

𝑌𝑌𝑌 = 𝑋𝑋𝑋𝛽𝛽𝛽 + 𝑢𝑢𝑢.

Plugging this into the OLS formula:
̂𝛽𝛽𝛽 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌
= (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′(𝑋𝑋𝑋𝛽𝛽𝛽 + 𝑢𝑢𝑢)
= 𝛽𝛽𝛽 + (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑢𝑢𝑢.

Taking the conditional expectation:

𝐸[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋] = 𝛽𝛽𝛽 + (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝐸[𝑢𝑢𝑢|𝑋𝑋𝑋].
Under exogeneity and i.i.d. sampling,

𝐸[𝑢𝑖|𝑋𝑋𝑋] = 𝐸[𝑢𝑖|𝑋𝑋𝑋1, … ,𝑋𝑋𝑋𝑛] = 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0,
hence, 𝐸[𝑢𝑢𝑢|𝑋𝑋𝑋] = 000. Thus, the conditional mean is

𝐸[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋] = 𝛽𝛽𝛽,
and the unconditional mean becomes

𝐸[ ̂𝛽𝛽𝛽] = 𝐸[𝐸[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋]] = 𝛽𝛽𝛽.

Thus, each element of the OLS estimator is unbiased:

𝐸[ ̂𝛽𝑗] = 𝛽𝑗 for 𝑗 = 1, … , 𝑘.
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Variance

Recall the general rule that for any matrix 𝐴𝐴𝐴,

𝑉 𝑎𝑟(𝐴𝐴𝐴𝑢𝑢𝑢) = 𝐴𝐴𝐴 𝑉 𝑎𝑟(𝑢𝑢𝑢)𝐴𝐴𝐴′.

Hence, with 𝐴𝐴𝐴 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′, by the symmetry of (𝑋𝑋𝑋′𝑋𝑋𝑋)−1,

Var( ̂𝛽𝛽𝛽|𝑋𝑋𝑋) = Var(𝛽𝛽𝛽 + (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑢𝑢𝑢|𝑋𝑋𝑋)
= Var((𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑢𝑢𝑢|𝑋𝑋𝑋)
= (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑉 𝑎𝑟(𝑢𝑢𝑢|𝑋𝑋𝑋)((𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′)′

= (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑉 𝑎𝑟(𝑢𝑢𝑢|𝑋𝑋𝑋)𝑋𝑋𝑋(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

Under i.i.d. sampling, the conditional covariance matrix of 𝑢𝑢𝑢 takes a diagonal form:

𝑉 𝑎𝑟(𝑢𝑢𝑢|𝑋𝑋𝑋) =
⎛⎜⎜⎜⎜
⎝

𝜎2
1 0 ⋯ 0

0 𝜎2
2 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜎2

𝑛

⎞⎟⎟⎟⎟
⎠

,

where 𝜎2
𝑖 = 𝐸[𝑢2

𝑖 |𝑋𝑋𝑋𝑖] = 𝜎2(𝑋𝑋𝑋𝑖).
While 𝑢𝑖 is uncorrelated with 𝑋𝑋𝑋𝑖 under the exogeneity assumption, its variance may depend
on 𝑋𝑋𝑋𝑖. In this case, we say that the errors are heteroskedastic.

Inserting this diagonal structure into the OLS covariance matrix gives

Var( ̂𝛽𝛽𝛽|𝑋𝑋𝑋) = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1
𝑛

∑
𝑖=1

𝜎2
𝑖 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖(𝑋𝑋𝑋′𝑋𝑋𝑋)−1

= (
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1 𝑛
∑
𝑖=1

𝜎2
𝑖 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖(
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1

In the specific situation where the conditional variance of the error does not depend on 𝑋𝑋𝑋𝑖
and is equal to 𝜎2 for any value of 𝑋𝑋𝑋𝑖, we say that the errors are homoskedastic.

The homoskedastic error covariance matrix has the following simple form:

𝑉 𝑎𝑟(𝑢𝑢𝑢|𝑋𝑋𝑋) = 𝜎2𝐼𝐼𝐼𝑛 =
⎛⎜⎜⎜⎜
⎝

𝜎2 0 ⋯ 0
0 𝜎2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜎2

⎞⎟⎟⎟⎟
⎠

.

The resulting OLS covariance matrix is

Var( ̂𝛽𝛽𝛽|𝑋𝑋𝑋) = 𝜎2(𝑋𝑋𝑋′𝑋𝑋𝑋)−1 = 𝜎2(
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1
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10.2 Convergence

Consistency

Recall that an estimator ̂𝜃𝑛 is consistent for a parameter 𝜃 if for any 𝜖 > 0,

𝑃(| ̂𝜃𝑛 − 𝜃| > 𝜖) → 0 as 𝑛 → ∞.

Using Markov’s inequality, we can bound this term from above by the MSE of the estimator:

𝑃(| ̂𝜃𝑛 − 𝜃| > 𝜖) ≤ 𝐸[| ̂𝜃𝑛 − 𝜃|2]
𝜖2 = MSE( ̂𝜃𝑛)

𝜖2 .

So if the MSE of an estimator converges to zero as the sample size 𝑛 approaches infinity, then
𝑃(| ̂𝜃𝑛 − 𝜃| > 𝜖) also converges to zero, and the estimator is consistent.

Sufficient condition for consistency

If lim𝑛→∞ MSE( ̂𝜃𝑛) = 0, then ̂𝜃𝑛 is consistent for 𝜃.

Rate of Convergence

The consistency property of an estimator indicates that the estimation uncertainty vanishes
as the sample size 𝑛 approaches infinity, but it does not quantify how accurate the estimate is
for a given finite sample size 𝑛.
Recall that the MSE for the sample mean is

MSE(𝑌 ) = 𝜎2

𝑛 .

A quantity with better interpretability than the MSE is the square root of the MSE, similar
to the variance and standard deviation. The root mean squared error (RMSE) of an
estimator ̂𝜃𝑛 for 𝜃 is

RMSE( ̂𝜃𝑛) = √MSE( ̂𝜃𝑛) = √𝐸[( ̂𝜃𝑛 − 𝜃)2].
The RMSE measures how much an estimate differs on average from its true parameter value
for a given sample size 𝑛.
The RMSE of the sample mean is

RMSE(𝑌 ) = 𝜎√𝑛.

Since the RMSE is proportional to 1/√𝑛, we say that the sample mean has the rate of
convergence

√𝑛:
lim

𝑛→∞
√𝑛 ⋅ RMSE(𝑌 ) = 𝜎.
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Rate of convergence

A consistent estimator ̂𝜃𝑛 has convergence rate
√𝑛 if

0 < lim
𝑛→∞

(√𝑛 ⋅ RMSE( ̂𝜃𝑛)) < ∞

More generally, the rate of convergence is 𝑟𝑛 if

0 < lim
𝑛→∞

(𝑟𝑛 ⋅ RMSE( ̂𝜃𝑛)) < ∞.

The rate
√𝑛 holds for many common estimators. In this case, we say that the estimator

has a parametric convergence rate. There are important exceptions where estimators
have slower or faster convergence rates (nonparametric estimators, certain machine learning
methods, bootstrap, cointegration, long-memory time series).

The rate of convergence gives a first indication of how fast the uncertainty decreases as we get
more observations.

Consider the parametric convergence rate
√𝑛 like in the sample mean case. To halve the

RMSE, we need to increase the sample size by a factor of 4 since
√

4 = 2. To reduce the
RMSE by a factor of 4, we already need to increase the sample size by a factor of 16.

Convergence Rate of OLS

Under i.i.d sampling and the exogeneity condition, OLS is unbiased, so the conditional MSE
equals the conditional variance:

Var( ̂𝛽𝛽𝛽|𝑋𝑋𝑋) = (
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1
(

𝑛
∑
𝑖=1

𝜎2
𝑖 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖)(
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1

= 1
𝑛( 1

𝑛
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1
( 1

𝑛
𝑛

∑
𝑖=1

𝜎2
𝑖 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖)( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1
,

where 𝜎2
𝑖 = 𝐸[𝑢2

𝑖 |𝑋𝑋𝑋𝑖]. Write

𝑄𝑄𝑄 ∶= 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖], ΩΩΩ = 𝐸[𝑢2

𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖].

By the law of large numbers,

1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖

𝑝
→ 𝑄𝑄𝑄, 1

𝑛
𝑛

∑
𝑖=1

𝜎2
𝑖 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖
𝑝

→ ΩΩΩ,

and hence
𝑛Var( ̂𝛽𝛽𝛽|𝑋𝑋𝑋)

𝑝
→ 𝑄𝑄𝑄−1ΩΩΩ𝑄𝑄𝑄−1.
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Taking expectations gives the unconditional statement

𝑛MSE( ̂𝛽𝛽𝛽) = 𝑛Var( ̂𝛽𝛽𝛽) 𝑛→∞⟶ 𝑄𝑄𝑄−1ΩΩΩ𝑄𝑄𝑄−1.
For the 𝑗-th coefficient,

lim
𝑛→∞

√𝑛 ⋅ RMSE( ̂𝛽𝑗) = √[(𝑄𝑄𝑄−1ΩΩΩ𝑄𝑄𝑄−1)]𝑗𝑗,

where [⋅]𝑗𝑗 indicates the (𝑗, 𝑗)-th diagonal element of a matrix.

Thus, each OLS coefficient has a parametric (i.e.
√𝑛) rate of convergence, and the asymptotic

variance of the OLS coefficient vector is 𝑄𝑄𝑄−1ΩΩΩ𝑄𝑄𝑄−1.

10.3 Gaussian distribution

Univariate Normal distribution

The Gaussian distribution, also known as the normal distribution, is a fundamental concept
in statistics.

A random variable 𝑍 is said to follow a normal distribution if it has the following probability
density function (PDF):

𝑓(𝑢) = 1√
2𝜋𝜎2 exp( − (𝑢 − 𝜇)2

2𝜎2 ).

Formally, we denote this as 𝑍 ∼ 𝒩(𝜇, 𝜎2), meaning that 𝑍 is normally distributed with mean
𝜇 and variance 𝜎2.

• Mean: 𝐸[𝑍] = 𝜇
• Variance: Var(𝑍) = 𝜎2

• Skewness: skew(𝑍) = 0
• Kurtosis: kurt(𝑍) = 3

−4 0 4 8

0.
00

0.
10

0.
20

PDF of N(2,2)

−4 0 4 8

0.
0

0.
4

0.
8

CDF of N(2,2)
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The normal distribution with mean 0 and variance 1 is called the standard normal distri-
bution. It has the PDF

𝜙(𝑢) = 1√
2𝜋 exp( − 𝑢2

2 )

and its CDF is
Φ(𝑎) = ∫

𝑎

−∞
𝜙(𝑢) 𝑑𝑢.

𝒩(0, 1) is symmetric around zero:

𝜙(𝑢) = 𝜙(−𝑢), Φ(𝑎) = 1 − Φ(−𝑎)

Standardizing: If 𝑍 ∼ 𝒩(𝜇, 𝜎2), then

𝑍 − 𝜇
𝜎 ∼ 𝒩(0, 1).

The CDF of 𝑍 is 𝑃(𝑍 ≤ 𝑎) = Φ((𝑎 − 𝜇)/𝜎).
Linear combinations of normally distributed variables are normal: If 𝑌1, … , 𝑌𝑛 are jointly
normally distributed and 𝑐1, … , 𝑐𝑛 ∈ ℝ, then ∑𝑛

𝑗=1 𝑐𝑗𝑌𝑗 is normally distributed.

Multivariate Normal distribution

Let 𝑍1, … , 𝑍𝑘 be independent 𝒩(0, 1) random variables.

Then, the 𝑘-vector 𝑍𝑍𝑍 = (𝑍1, … , 𝑍𝑘)′ has the multivariate standard normal distribution,
written 𝑍𝑍𝑍 ∼ 𝒩(000,𝐼𝐼𝐼𝑘). Its joint PDF is

𝑓(𝑥𝑥𝑥) = 1
(2𝜋)𝑘/2 exp(−𝑥𝑥𝑥′𝑥𝑥𝑥

2 ) .

If 𝑍𝑍𝑍 ∼ 𝒩(000,𝐼𝐼𝐼𝑘) and 𝑍𝑍𝑍∗ = 𝜇𝜇𝜇 + 𝐵𝐵𝐵𝑍𝑍𝑍 for a 𝑞 × 1 vector 𝜇𝜇𝜇 and a 𝑞 × 𝑘 matrix 𝐵𝐵𝐵, then 𝑍𝑍𝑍∗ has
a multivariate normal distribution with mean vector 𝜇𝜇𝜇 and covariance matrix ΣΣΣ = 𝐵𝐵𝐵𝐵𝐵𝐵′,
written 𝑍𝑍𝑍∗ ∼ 𝒩(𝜇𝜇𝜇,ΣΣΣ).
The 𝑞-variate PDF of 𝑍𝑍𝑍∗ is

𝑓(𝑢𝑢𝑢) = 1
(2𝜋)𝑞/2(det(ΣΣΣ))1/2 exp( − 1

2(𝑢𝑢𝑢 − 𝜇𝜇𝜇)′ΣΣΣ−1(𝑢𝑢𝑢 − 𝜇𝜇𝜇)).

The mean vector and covariance matrix are

𝐸[𝑍𝑍𝑍∗] = 𝜇𝜇𝜇, Var(𝑍𝑍𝑍∗) = ΣΣΣ.
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The 3D plot shows the bivariate normal PDF with parameters

𝜇𝜇𝜇 = (0
0) , ΣΣΣ = ( 1 0.8

0.8 1 ) .

10.4 Central Limit Theorem

Convergence in distribution

Let 𝑉𝑉𝑉 𝑛 be a sequence of 𝑘-variate random variables and let 𝑉𝑉𝑉 be a 𝑘-variate random variable

𝑉𝑉𝑉 𝑛 converges in distribution to 𝑉𝑉𝑉 , written 𝑉𝑉𝑉 𝑛
𝑑→ 𝑉𝑉𝑉 , if

lim
𝑛→∞

𝑃(𝑉𝑉𝑉 𝑛 ≤ 𝑎𝑎𝑎) = 𝑃(𝑉𝑉𝑉 ≤ 𝑎𝑎𝑎)

for all 𝑎𝑎𝑎 at which the CDF of 𝑉𝑉𝑉 is continuous, where “≤” is componentwise.

If 𝑉𝑉𝑉 has the distribution 𝒩(𝜇𝜇𝜇,ΣΣΣ), we write 𝑉𝑉𝑉 𝑛
𝑑→ 𝒩(𝜇𝜇𝜇,ΣΣΣ).

By the univariate central limit theorem, the sample mean converges to a normal distribution:

Central Limit Theorem (CLT)

Let 𝑊1, … , 𝑊𝑛 be an i.i.d. sample with 𝐸[𝑊𝑖] = 𝜇 and Var(𝑊𝑖) = 𝜎2 < ∞. Then, the sample
mean 𝑊 = 1

𝑛 ∑𝑛
𝑖=1 𝑊𝑖 satisfies

√𝑛(𝑊 − 𝜇) 𝑑⟶ 𝒩(0, 𝜎2).

Below, you will find an interactive shiny app for the central limit theorem:

SHINY APP: CLT
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The same result can be extended to random vectors.

Multivariate Central Limit Theorem (MCLT)

If 𝑊𝑊𝑊 1, … ,𝑊𝑊𝑊 𝑛 is a multivariate i.i.d. sample with 𝐸[𝑊𝑊𝑊 𝑖] = 𝜇𝜇𝜇 and Var(𝑊𝑊𝑊 𝑖) = ΣΣΣ < ∞. Then,
the sample mean vector 𝑊𝑊𝑊 = 1

𝑛 ∑𝑛
𝑖=1 𝑊𝑊𝑊 𝑖 satisfies

√𝑛(𝑊𝑊𝑊 − 𝜇𝜇𝜇) 𝑑→ 𝒩(000,ΣΣΣ)

(see, e.g., Stock and Watson Section 19.2).

10.5 Asymptotic Normality

Let’s apply the MCLT to the OLS vector. Consider 𝑊𝑊𝑊 𝑖 = 𝑋𝑋𝑋𝑖𝑢𝑖, which satisfies

𝐸[𝑋𝑋𝑋𝑖𝑢𝑖] = 000, Var(𝑋𝑋𝑋𝑖𝑢𝑖) = 𝐸[𝑢2
𝑖𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖] = ΩΩΩ.

Therefore, by the MCLT,
√𝑛( 1

𝑛
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑢𝑖)
𝑑→ 𝒩(000,ΩΩΩ).

Thus, because 1
𝑛 ∑𝑛

𝑖=1 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖

𝑝
→ 𝑄𝑄𝑄,

√𝑛( ̂𝛽𝛽𝛽 − 𝛽𝛽𝛽) = √𝑛( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖)

−1
( 1

𝑛
𝑛

∑
𝑖=1

𝑋𝑋𝑋𝑖𝑢𝑖)
𝑑→ 𝑄𝑄𝑄−1𝒩(000,ΩΩΩ).

where the right-hand side means the distribution of 𝑄𝑄𝑄−1𝑍𝑍𝑍 for 𝑍𝑍𝑍 ∼ 𝒩(000,ΩΩΩ).
Finally, since the variance of 𝑄𝑄𝑄−1𝒩(000,ΩΩΩ) is 𝑄𝑄𝑄−1ΩΩΩ𝑄𝑄𝑄−1, we have the following central limit
theorem for the OLS estimator:

Central Limit Theorem for OLS

Consider the linear model 𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖 such that

1) Random sampling: (𝑌𝑖,𝑋𝑋𝑋′
𝑖) are i.i.d.

2) Exogeneity (mean independence): 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0.
3) Finite fourth moments: 𝐸[𝑋4

𝑖𝑗] < ∞ and 𝐸[𝑢4
𝑖 ] < ∞.

4) Full rank: 𝐸[𝑋𝑋𝑋𝑖𝑋𝑋𝑋′
𝑖] is positive definite (hence invertible).
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Then, as 𝑛 → ∞,

√𝑛( ̂𝛽𝛽𝛽 − 𝛽𝛽𝛽) 𝑑→ 𝒩(000,𝑄𝑄𝑄−1ΩΩΩ𝑄𝑄𝑄−1).

The only additional assumption compared to the consistency of OLS is the finite fourth mo-
ments condition instead of the finite second moments condition. This technical assumption
ensures that the variance of 𝑋𝑋𝑋𝑖𝑢𝑖 is finite.

Specifically, the Cauchy-Schwarz inequality implies that

𝐸[𝑋2
𝑖𝑗𝑢2

𝑖 ] ≤ √𝐸[𝑋4
𝑖𝑗]𝐸[𝑢4

𝑖 ] < ∞,

so that the elements of ΩΩΩ are finite.

If homoskedasticity holds, then ΩΩΩ = 𝜎2𝑄𝑄𝑄, and the asymptotic variance simplifies to
𝑄𝑄𝑄−1ΩΩΩ𝑄𝑄𝑄−1 = 𝜎2𝑄𝑄𝑄−1.

10.6 Efficiency

When comparing two unbiased estimators ̂𝜃𝑛 and ̃𝜃𝑛 then ̂𝜃𝑛 is at least as efficient as ̃𝜃𝑛 if it
has no larger variance:

Var( ̂𝜃𝑛) ≤ Var( ̃𝜃𝑛).
For vector-valued estimators, we compare covariance matrices in the Loewner order: 𝐴𝐴𝐴 ⪯ 𝐵𝐵𝐵 if
𝐵𝐵𝐵 − 𝐴𝐴𝐴 is a positive semidefinite matrix (see matrix tutorial for details).

Then, the estimator ̂𝜃𝜃𝜃𝑛 is at least as efficient as ̃𝜃𝜃𝜃𝑛 if the covariance matrices satisfy

Var( ̂𝜃𝜃𝜃𝑛) ⪯ Var( ̃𝜃𝜃𝜃𝑛).

Under homoskedasticity, the OLS coefficient is the efficient estimator for 𝛽𝛽𝛽.
Gauss–Markov Theorem

Consider the linear model 𝑌𝑖 = 𝑋𝑋𝑋′
𝑖𝛽𝛽𝛽 + 𝑢𝑖 with

1. Random sampling: (𝑌𝑖,𝑋𝑋𝑋′
𝑖) i.i.d.

2. Exogeneity: 𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖] = 0.
3. Full rank: 𝑋𝑋𝑋 has column rank 𝑘.
4. Homoskedasticity: Var(𝑢𝑖|𝑋𝑋𝑋𝑖) = 𝜎2.

Then the OLS estimator ̂𝛽𝛽𝛽 = (𝑋𝑋𝑋′𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝑌𝑌𝑌 is the Best Linear Unbiased Estimator
(BLUE):
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• Linear: it is linear in 𝑌𝑌𝑌 ;
• Unbiased: 𝐸[ ̂𝛽𝛽𝛽|𝑋𝑋𝑋] = 𝛽𝛽𝛽;
• Best: for any other linear unbiased estimator ̃𝛽𝛽𝛽,

Var( ̃𝛽𝛽𝛽|𝑋𝑋𝑋) ⪰ Var( ̂𝛽𝛽𝛽|𝑋𝑋𝑋) = 𝜎2(𝑋𝑋𝑋′𝑋𝑋𝑋)−1.

In the heteroskedastic linear regression model, OLS is not efficient. We can recover the Gauss-
Markov efficiency in the heteroskedastic linear regression model if we use the generalized
least squares estimator (GLS) instead:

̂𝛽𝛽𝛽𝑔𝑙𝑠 = (𝑋𝑋𝑋′𝐷𝐷𝐷−1𝑋𝑋𝑋)−1𝑋𝑋𝑋′𝐷𝐷𝐷−1𝑌𝑌𝑌

= (
𝑛

∑
𝑖=1

1
𝜎2

𝑖
𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖)
−1

(
𝑛

∑
𝑖=1

1
𝜎2

𝑖
𝑋𝑋𝑋𝑖𝑌𝑖),

where
𝐷𝐷𝐷 = Var(𝑢𝑢𝑢|𝑋𝑋𝑋) = diag(𝜎2

1, … , 𝜎2
𝑛)

GLS can be derived from the Method of Moments principle using the following moment con-
dition:

𝐸[𝜎−2
𝑖 𝑋𝑋𝑋𝑖𝑢𝑖] = 𝐸[𝜎−2

𝑖 𝑋𝑋𝑋𝑖𝐸[𝑢𝑖|𝑋𝑋𝑋𝑖]] = 000.
Then 𝐸[𝜎−2

𝑖 𝑋𝑋𝑋𝑖𝑢𝑖] = 𝐸[𝜎−2
𝑖 𝑋𝑋𝑋𝑖(𝑌𝑖 − 𝑋𝑋𝑋′

𝑖𝛽𝛽𝛽)] = 000 can be rearranged as

𝛽𝛽𝛽 = 𝐸[𝜎−2
𝑖 𝑋𝑋𝑋𝑖𝑋𝑋𝑋′

𝑖]−1𝐸[𝜎−2
𝑖 𝑋𝑋𝑋𝑖𝑌𝑖].

The GLS estimator is BLUE in the heteroskedastic linear regression model.

However, GLS is generally infeasible because 𝐷𝐷𝐷 (or the 𝜎2
𝑖 ) is unknown. Unless we can credibly

model 𝐷𝐷𝐷, the standard approach is to use OLS and account for heteroskedastity in additional
inferential steps. When a plausible variance structure is available, one can estimate it and run
feasible GLS (FGLS).

10.7 R Code

statistics-sec07.R

178

https://statistics.svenotto.com/statistics-sec07.R

	Organization of the Course
	Data
	Data Structures
	Univariate Datasets
	Multivariate Datasets
	Matrix Algebra

	Datasets in R
	CA Schools Data
	CPS Data

	Statistical Framework
	Random sampling
	Clustered sampling
	Time dependence

	R Code

	Distribution
	Probability Distribution
	Discrete Random Variables
	Continuous Random Variables
	Conditional Distribution
	Joint Distribution
	Marginal and Joint Distributions
	Conditional and Joint Distributions
	Recovering the Joint from Conditionals

	Independence of Random Variables
	Independent and Identically Distributed
	Independence of Random Vectors
	PMF and PDF Estimation
	PMF estimation
	PDF estimation

	R Code

	Moments
	Sample Moments
	Population Moments
	Discrete Random Variables
	Continuous Random Variables
	General Cases
	Exceptional Cases

	Convergence in Probability
	Law of Large Numbers
	Clustered Data
	Time Series Data

	Central Moments
	Cross Moments
	Rules of Calculation
	Standardized Moments
	Skewness
	Kurtosis
	Log-transformations

	Multivariate Moments
	Cross Moment Matrix
	Sample covariance matrix
	Sample correlation matrix

	R Code

	Least squares
	Regression Fundamentals
	Regression Problem
	Linear Regression

	Ordinary least squares (OLS)
	Simple linear regression (k=2)
	Regression Plots
	Line Fitting
	Multidimensional Visualizations

	Matrix notation
	OLS Formula
	Projection Matrix
	Residuals

	Goodness of Fit
	Analysis of Variance
	R-squared
	Degree of Freedom Corrections
	Adjusted R-squared

	Regression Table
	When OLS Fails
	Too many regressors
	Perfect multicollinearity
	Dummy variable trap

	R Code

	Regression
	Conditional Expectation
	Examples
	The CEF as a Random Variable

	CEF Properties
	Law of Iterated Expectations (LIE)
	Conditioning Theorem (CT)
	Best Predictor Property
	Independence Implications

	Linear Model Specification
	Prediction Error
	Linear Regression Model
	Exogeneity
	Model Misspecification

	Population Regression Coefficient
	Moment Condition
	OLS Estimation

	Consistency
	R Code

	Effects
	Marginal Effects
	Interpretation of Coefficients
	Correlation vs. Causation
	Omitted Variable Bias
	Control Variables
	Good vs. Bad Controls
	Confounders
	Mediators and Colliders

	Application: Class Size Effect
	Control Strategy
	Interpretation of Marginal Effects
	Identifying Good and Bad Controls

	Polynomials
	Experience and wages
	Income and test scores

	Logarithms
	Log-income and test scores
	Education and log-wages

	Interactions
	R Code

	Inference
	Strict Exogeneity
	Unbiasedness
	Sampling Variance of OLS
	Homoskedasticity

	Gaussian distribution
	Univariate Normal distribution
	Multivariate Normal distribution

	Gaussian Regression Model
	Classical Standard Errors
	Distributions from Normal Samples
	Chi-squared distribution
	Student t-distribution

	Exact Confidence Intervals
	Confidence Interval Interpretation
	Limitations of the Gaussian Approach
	Central Limit Theorem
	Asymptotic Normality of OLS
	Robust standard errors
	HC1 Correction
	HC3 Correction

	Robust Confidence Intervals
	Summary
	R Code

	Testing
	t-Test
	p-Value
	Significance Stars
	Regression Tables

	Testing for Heteroskedasticity: Breusch-Pagan Test
	Testing for Normality: Jarque–Bera Test
	Joint Hypothesis Testing
	Wald Test
	F-test
	F-tests in R

	Jackknife Methods
	Projection Matrix
	Leverage Values
	Standardized Residuals
	Residuals vs. Leverage Plot
	Jackknife Standard Errors

	Cluster-robust Inference
	Cluster-robust Standard Errors
	Finite Sample Correction
	When to Cluster
	Implementation in R
	Challenges with Cluster-robust Inference

	R Code

	Hypothesis testing
	Statistical hypotheses
	t-Tests
	The p-value
	Multiple testing problem
	Joint Hypotheses
	Wald Test
	F-Test
	Diagnostics tests
	Breusch-Pagan Test (Koenker's version)
	Jarque-Bera Test

	Nonliearities in test score regressions
	R-codes

	Estimation Theory
	Bias, Variance, and MSE
	Sample mean
	Sample variance
	OLS Coefficient

	Convergence
	Consistency
	Rate of Convergence
	Convergence Rate of OLS

	Gaussian distribution
	Univariate Normal distribution
	Multivariate Normal distribution

	Central Limit Theorem
	Asymptotic Normality
	Efficiency
	R Code


